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Section 1

Scope

1.1 Identification

This document is the final technical report for the Composability for Secure Systems program,
contract F30602-96-C-0344. It provides an overview of all of the technical efforts on the
program. It describes significant accomplishments and obstacles encountered during these
efforts and lessons learned while carrying out the program. Finally, it provides suggestions for
future efforts which build upon the successes of the program or address deficiencies.

1.2 Document Overview
The report is structured as follows:

» Section 1, Scope, defines the scope and gives this overview of the document,

» Section 2, Program Summary, provides a high-level summary of the objectives, ap-
proach, and results of the CSS program,

= Section 3, CSS Framework, describes the CSS composition and refinement framework,

= Section 4, Top Level Specification, describes the Top-Level Specification (TLS) which
models network-transparent IPC,

» Section 5, Design Refinement, summarizes the refinement of the network server com-
ponent of the TLS into an z-Kernel network stack,

» Section 6, Fault Tolerance, describes the application of the framework to the specifica-
tion and analysis of fault tolerance properties,

s Section 7, Policy Composition, describes the modeling of restrictiveness in the frame-
work to provide for composable non-interference analysis,

s Section 8, Tool Support, describes prototype tools to support the application of the
framework,

s Section9, Program Conclusions, summarizes the main conclusions of the CSS program,
» Appendix A, Bibliography, gives citations for each referenced document.




Section 2

Program Summary

2.1 Obijectives and Approach

The objective of the Composability for Secure Systems (CSS) program was to develop and
demonstrate a composable methodology for building highly-assured, secure, fault-tolerant dis-
tributed systems and networks, and design an automated development environment to support
the methodology.

Many kinds of system properties may be formally analyzed during a system design effort
including functional correctness, fault tolerance and security. Substantial work has been done
to establish effective methods for performing each of these kinds of analysis. However, it is
typically the case that each method requires a particular style or language for the underlying
formal description of the system. This is unfortunate for two reasons. First, there can be
significant expense in producing multiple specifications of a system. Second, it introduces the
question of whether all the specifications are consistent, and it makes it harder to determine
whether an implementation of the system is correct since it must be compared to multiple

formal descriptions.

To address these issues the CSS program has studied composition and refinement as unifying
concepts that support analysis of functional correctness, fault tolerance and security (non-
interference) from a single specification. A mathematical framework has been developed for
specifying and analyzing systems. The program has demonstrated the application of this
framework to the analysis of functional correctness, fault tolerance and security.

2.2 Significant Results and Accomplishments

The following list highlights the major results and accomplishments of the program:

s Developed a framework in PVS that supports composition and refinement reasoning
including fairness properties

s Used the framework to perform a proof-of-concept analysis of fault tolerance

» Formalized the restrictiveness information flow policy within the framework and proved
that this formalization is composable

a Explored the development of tools to support application of the framework including a
specification browser and extensions to the PVS prover to make it easier to perform proofs

within the framework

= Specified an z-Kernel protocol stack as a composition of components within the framework
and used the framework to show that this stack is a refinement of an abstract network

server specification




2.3 Technical Documentation

There are four primary types of output from the CSS program: technical reports, a
short research paper to be presented at the Third IEEE High Assurance Systems En-
gineering Symposium in November, PVS libraries, and software for the prototype tools.
The technical reports, PVS libraries and software are available from the CSS Web Page
(http://www.securecomputing.com/css/). The libraries are in the form of PVS dump
files. The software consists of Emacs LISP code implementing the Specification Browser tool
and PVS strategies implementing the Analyst’s Assistant tool. The libraries and software are
described in the corresponding technical reports. This section presents brief descriptions of all
technical reports written for the program. It is divided into sections for contract deliverables
(CDRLs) and a short research paper.

2.3.1 CDRL Document Summary

This section describes all technical reports provided as contract deliverables (CDRLs). The
missing CDRLs in this list are for the program management documents.

Top-Level Specification (TLS), CDRL A004 [15]

In this report we give a high level description of a network-transparent, distributed
interprocess communication manager. This report provides a baseline specification to be
used in other CSS tasks, and serves as an example starting point for the CSS design
methodology.

Security Policy Composability Results (SPCR), CDRL A005 [21]

We describe tools and a methodology for analyzing a noninterference property called
restrictiveness in the CSS composition and refinement framework. These tools take the
form of extensions to the composition and refinement framework [14] that are suited for
performing security analyses of systems at the component level.

Refined Design Report (RDR), CDRL A006 [14]

This report serves several purposes relating to the use of our composition and refinement
framework. The bulk of the report exhibits a working example of refinement; the top level
specification of a network server (described in the TLS [15]) is here refined into a detailed
description of network protocols using the z-Kernel methodology [5]). The document also
discusses the PVS theories comprising the framework and relates lessons learned while
designing, implementing, and testing the framework.

Tools Report, CDRL A007 [22]

This report contains a description of the requirements, design and code for prototype
tools developed on the program. Two types of tools—a browser for viewing and editing
specifications, and PVS strategies to help in the formal analysis of specifications—are
covered.

Modified Top-Level Specification (MTLS), CDRL A008 [20]

This report presents a modified version of the Top-Level Specification (TLS) that includes
fault tolerance properties.

Fault Tolerance Analysis (FTAR), CDRL A009 [18]




This report presents the results of a proof-of-concept effort to reason about fault tolerance
properties using the refinement framework. An architecture for fault tolerance is specified
and analyzed.

Final Report, CDRL A010 [19]

This report is the final report for the CSS program and provides an overview of all of the
technical efforts on the program. It describes significant accomplishments and obstacles
encountered during these efforts and lessons learned while carrying out the program.
Finally, it provides suggestions for future efforts which build upon the successes of the
program or address deficiencies.

2.3.2 Research Paper

Using Composition to Design Secure, Fault-Tolerant Systems
This paper summarizes the program’s approach and results.

2.4 Dependent Programs
Two other research programs at SCC have benefited from the CSS program.

s Assurance in the Fluke Microkernel (AFM) (June 1997 — present)

The CSS Framework is currently being used in two ways on the AFM program [17, 16]. A
simplified process manager and file server are being specified and analyzed with the goal
of further demonstrating and exploring the use of the framework. At least two levels of
abstraction will be used: an abstract requirements level and a more detailed “implemen-
tation level.” The desired properties of secure process creation will be demonstrated at the
requirements level. Lower levels will be shown to be refinements of this level, therefore
inheriting the desired properties. The AFM program is also using the CSS Framework
to perform a general analysis of issues involved in maintaining consistency between an
object manager that enforces a security policy and a security server that supplies security
decisions based on that policy, paying special attention to the case where the policy can
change and the object manager caches policy decisions.

s Hypervisors for Security and Robustness (October 1996 ~ March 1998)

This program used the CSS composition and refinement framework to support the speci-
fication and analysis of the composition of a kernel with security hypervisors that monitor
kernel requests to provide security [23, 24].




Section 3
CSS Framework

3.1 Goals

The primary goal of this portion of the program was to develop a formal framework for rea-
soning about composite systems and performing formal design refinement. This provided an
underlying framework that served as a basis for the remainder of the work on the program.
Specific goals in developing the framework were to make it small, easy to use and not too hard
to verify while still providing the essential reasoning power.

Composition is a technique for specifying a large system by combining the specifications of
smaller, simpler pieces—the system components. This technique provides advantages that
are similar to those obtained from modular software design. The smaller, simpler pieces are
typically easier to write and maintain. This technique also allows for reuse of specifications for
individual components. Just as a well-designed software module can be reused in a variety of
new contexts, a component specification can be combined with other component specifications
in novel ways to obtain new system specifications. However, the benefits do not stop there.
We typically wish to analyze a system specification to show that it satisfies certain desired
properties. Composition allows us to decompose this analysis into the analysis of the compo-
nents. Rather than analyzing the entire composite system, we focus on a single component at
a time, showing that it satisfies some more localized property. We then show that the localized
properties of the components together imply that the global desired property is satisfied by the
system as a whole. Since the local analyses depend upon only a single component, they are
not only simpler but also reusable. They need not be redone when the component is used in
a new context. In addition to the composition of pure analyses described above, we can also
compose conditional analyses. In this case, we show that a component satisfies a localized
property under given assumptions about the environment. When we compose this component
with others we show that the other components justify the environment assumptions. One can
then conclude that the system as a whole satisfies the localized property.

Refinement supports reasoning about a system specified at multiple levels of abstraction. Re-
finement analysis makes it possible to show that properties demonstrated for an abstract
specification are preserved in a less abstract refinement of that specification that reflects a
more detailed design. It is usually easier to prove desired system properties for an abstract
specification than for a more detailed one. On the other hand, it is easier to relate a detailed
specification to its implementation since it includes more design details. The goal, of course,
is to know that the implementation satisfies the desired properties. Refinement analysis al-
lows us to conclude this by proving that an abstract specification satisfies the properties, then
arguing that a refined specification is consistent with the implemented system and finally, com-
paring the two specifications to show that the refined one is consistent with the abstract one.
Thus, we only need analyze the property at the abstract level where this analysis is easiest. As
with composition, refinement can be pure (no assumptions about the environment are needed)
or conditional (the implementation argument depends on assumptions about the environment
that are later justified by other components).

Composition can be thought of as bottom-up analysis; properties shown to hold for components
are true of the composite system. Refinement is top-down analysis; properties demonstrated




at the abstract level are shown to be true of more detailed levels as well.

%n this section we describe the CSS Framework, a mathematical framework that supports the
ollowing:

= specifying system components (Section 3.2.1),
» composing components (Section 3.2.2), and
s performing both composition and refinement reasoning (Section 3.3.1).

Comparisons to prior work are included in Section 3.3.2. The framework is formalized in the
PVS specification language [9], and all results have been proven in PVS.!

3.2 Approach
3.2.1 Component Definitions

We begin by outlining the information that comprises a component specification in the CSS
framework. Each component specification c is a record defining the actions that the component
is willing to perform and placing constraints on the actions its environment is able to perform.
For each component, the set cags(c) (short for component agents) denotes a set of agents that
mediate actions of that component. The set guar(c) (guarantee) denotes the transitions that
the component can perform. A transition is modeled by a triple (s1, 52, a) indicating a change
of state from s, to s; mediated by agent a. Since guar(c) contains transitions performed by c,
the agent of each guar transition must be in cags(c).

The set of transitions hidd(c) (hidden) denotes the set of external (environment) transitions
allowed by the component. The agent in a hidd transition must not be in cags(c). The name
hidd is deceptive. It suggests data or transitions that are private and cannot be observed by
other components. However, hidd really denotes a set of transitions allowed in the environment.
Visibility plays no essential role. The term hidd dates from early versions of the framework
and has been kept primarily for historical reasons and because of the inertia in a large formal

system.
Examples of constraints that hidd might place on the environment include

» No environment agent may alter the internal variables of c.

» Only agent a may alter the interface that c presents to a.

These constraints are included in the component specification for ¢ because they are critical for
the correct operation of c. The specification of hidd makes composition possible. Section 3.2.2

below describes how hidd is applied during composition.

For convenience, we define steps(c) = guar(c) U hidd(c). The set of initial states allowed
by ¢ is denoted by init(c). Fairness requirements are represented by two fields, wfar(c) and
sfar(c), corresponding to weak and strong fairness conditions. Fairness requirements provide
a way to abstractly specify system liveness and scheduling properties. Each fairness condition
is represented by a set of transitions; each of wfar(c) and sfar(c) contain a set of fairness

1The framework will be available as a PVS dump file on the CSS Web Page
http://www.securecomputing.com/css/. The framework is described in detail toward the end of the CSS Refined

Design Report [14].




conditions (i.e., a set of sets of transitions). An execution history (i.e., trace) t for the system
satisfies a weak fairness condition F € wfar(c) if an infinite number of F-transitions occur in
or there are an infinite number of states in t in which F-transitions are not enabled (i.e., there
is no transition in F that starts in the given state). Similarly, an execution history t satisfies a
strong fairness condition F € sfar(c) if an infinite number of F-transitions occur in ¢ or there
is some point in ¢ after which F-transitions are never enabled.?

These six fields define the set (mprop) of execution histories allowed by the component:
mprop(c) = init(c) N (Osteps(c)) N fair_prop(c),

where fair_prop(c) denotes the histories that satisfy all the weak and strong fairness conditions
of ¢, and O is the temporal operator “always.” This formula denotes the set of all execution
histories that start in a state in inif(c), that contain only transitions in steps(c) and that satisfy
fair_prop(c). This set of histories is called the property of c.

The two remaining fields of a component definition are view and rely. The former describes
the portion of the state that is “visible” to the component. This does not directly enter into
the property definition and is used only to validate that the other fields of the component are
defined solely in terms of a specific portion of the system state information. The rely field is
used only for conditional analysis of components. This is discussed in Section 3.3.1.

3.2.2 Composition
The basic idea of composition is

= the composed components start in a common state that is acceptable to all of them,

» the components take turns performing transitions that are allowed by all the components?,
and

» the fairness conditions of all the components are satisfied.

We define the expression compose(S) to denote the composition of the components in the set S.
A composite system is itself a component. Let d = compose(S). Then

init(d) = () init(c)
wfar(d) = |Jwfar(c)
sfar(d)

I
-
L
\.’
b4
S

cags(d) = Ucags(c).

We want steps(d) = ) s steps(c) (i.e., d allows only steps that are allowed by all components).
Using cags(d), we break this intersection into the desired guar and hidd for d as follows. We
take

hidd(d) = () hidd(c).
cES
2See [14] for more information on wfar and sfar and [6] for a general discussion of specifying and reasoning about

fairness properties.
3We consider only interleaving representations of concurrency.




This set includes exactly the transitions in steps(d) that do not have an agent in cags(d). We
take
guar(d) = steps(d) — hidd(d),

(i.e., the set of all transitions in steps(d) having an agent in cags(d)). Equivalently, guar(d)
is the set of all transitions that are in guar(c) for some ¢ € S and in steps(c) for all ¢ € S
(i.e., those transitions that can be performed by at least one component and are allowed by all
components). Note that we allow components to have overlapping cags. However, if for every
pair of components in S the cags sets are disjoint, then guar(d) is the set of all transitions that
are in guar(c,) for some ¢; € S and in hidd(c,) for all ¢; € S, c2 # ¢1. This means that the hidd
of each component is automatically applied to the guar of each of its peer components during
the composition of the components.

This automatic application of the hidd values is important from a standpoint of reuse of
specifications. It removes the need to modify the specification of a component whenever it
is to be composed with a new component. It also allows the definition of a component to focus
entirely on its own state. This approach does however give hidd great power. There is no way
in this framework for the hidd of a component to be violated by one of its peers in a composite
system. This is why we stress that the hidd is to be considered part of the specification and
any valid implementation of the component must obey the requirements expressed in hidd. It
is every bit as important as the guar in achieving a faithful implementation of the component.
In analyzing an implementation for faithfulness to the hidd, it may be necessary to consider
other pieces of software. For example, the hidd of a component might say that certain local
variables are not altered during environment transitions. An implementation might achieve
this by placing these variables in a particular region of memory and relying on the kernel to

= protect this memory from other processes (i.e., to maintain address-space separation),
and

= not alter alter the memory itself.

Of course, the component itself must not do anything that would subvert the hidd such as
asking the kernel to share the private region with other processes.

3.3 Accomplishments
3.3.1 Composition and Refinement Reasoning

In this section we describe several theorems for reasoning about components and their compo-
sitions and refinements. In addition to these specific theorems, the framework provides a wide
variety of theorems for reasoning about general system properties including fairness proper-
ties. These theorems can make analysis of component properties easier. They can even make it
easier to perform general requirements analyses independent of any component specifications
since they incorporate the mathematical inductions that are often necessary in such analyses.
For example, an analyst can apply a single theorem to reduce the proof of a state invariant to
a proof that the initial state satisfies the invariant and every allowed transition maintains the
invariant.

Since the result of composition is a component, any place we refer to a component & composition
of components can be substituted.

Once a component is specified, one typically wants to prove that it satisfies certain desired
properties. As noted above, a property is a set of execution histories. A component c is said to




satisfy a property P if mprop(c) C P. The following theorem clarifies the relationship between
compose and mprop:*

Theorem 1 (mprop Intersection) For any set S of components,

mprop(compose(S)) = | mprop(c)
)

It is a trivial consequence of this theorem that if ¢ satisfies P, then so does every composite
system containing c as a component. This supports reuse of analysis and the decomposition of
a satisfaction proof into smaller, component-local satisfaction proofs.

Frequently, a software component is designed so that it satisfies some desired property as
long as certain assumptions hold true for its environment (e.g., the processes with which it
communicates follow an agreed upon protocol). In this case, we say the component conditionally
satisfies the property. To show that it satisfies the property unconditionally, we must show that
the environment justifies the assumptions. In the CSS Framework, the necessary assumptions
are stored with the component in the rely field which contains a set of environment transitions.
Unlike hidd, this is not a constraint upon an implementation of the component. It is merely
an assumption that supports conditional satisfaction analysis. A component ¢ conditionally
satisfies property P if P contains every execution history in mprop(c) such that every transition
is either in rely(c) or has an agent in cags(c). The following theorem makes it possible to convert
a conditional satisfaction result for some component to an unconditional one by composing the
component with an environment that justifies the assumptions:®

Theorem 2 (Composite Satisfies) For every set of components S, component ¢ € S and
property P, if

1. ¢ conditionally satisfies P, and
2. every transition r € steps(compose(S)) is either in rely(c) or has an agent in cags(c),

then compose(S) satisfies P (unconditionally).

Note that the first hypothesis depends only upon c and P. Therefore, its analysis can be reused
when ¢ is composed into a new environment. The second hypothesis is sensitive to the removal
or modification of components in S, but not to their addition. It is thus reusable in certain
circumstances. Also, this hypothesis does not require an analyst to consider all components in
S. Often, one or two components in S supply all the restrictions on r necessary to satisfy the
hypothesis.

There is an alternative to conditional satisfaction analysis that is also supported by the frame-
work. In this approach, one proves that a component satisfies a conditional property of the
form P = Q where P and Q are both properties. One must show that every execution history
allowed by the component (ignoring any assumptions added by rely) either is not in P or is
in Q. If the goal is to show that the entire system satisfies Q, then the component must be
composed with one or more other components that restrict the allowed execution histories to
those in P. This approach is actually stronger than conditional satisfaction since P can contain
initial state restrictions and fairness conditions in addition to transition restrictions as can be
specified in rely.

The framework also supports refinement analysis. A component c is a refinement of (or imple-
ments) another component d if mprop(c) C mprop(d). This is a useful concept since property

4 The name of this theorem in the PVS framework is mprop_conjthm.
5This is theorem compose satisfies in the PVS.



satisfaction is preserved under refinement. Thus properties can be proven at an abstract level
of specification and a refinement analysis can then be performed to show the properties remain
true for a lower level specification. Since mprop(c) and mprop(d) are typically infinite sets of
execution histories, which are themselves infinite sequences, an arbitrary refinement proof can
be diﬂieaxlt. The following theorem reduces the proof to sufficient conditions that are much
easier:

Theorem 3 (mprop Implementation) For any two components ¢ and d, ¢ implements dif

1. init(c) C init(d)
2. steps(c) C steps(d)
3. mprop(c) C fair_prop(d)

Note that only the third hypothesis requires reasoning about infinite sequences. The first
two bypotheses deal with states and transitions. Numerous framework theorems regarding
fairness properties support the proof of the third hypothesis, but there is insufficient space to
describe these here. (See [14].)

When ¢ and d are both composites, the proof that ¢ implements d can be decomposed into a
collection of smaller proofs showing that for each component e of composite d, there is some
set S, of the components comprising ¢ such that compose(S.) implements e. The subproofs will
usually be easier than the large one. Furthermore, each subproof that compose(S.) implements
e is likely to be reusable in another refinement analysis where e is implemented by the same low-
Jevel components S, but is composed with a different set of components. The CSS Framework
contains two theorems supporting such decompositions. The first, pure_decomp.thm, supports
pure decompositions in which the subproof for each e is entirely independent of the components
pot in S.. The analyst only need perform each of the subproofs.

The second theorem, decompthm _reduced, supports impure decompositions where at least one
of the subproofs requires assumptions about components outside the subproof. An impure
decomposition is sometimes necessary if the granularity of transitions changes from one speci-
fication level to the next. As with conditional satisfaction, we use rely to store the assumptions
about the other components. Assume the proof that ¢ implements d is impurely decomposed
into n subproofs that ¢; implements d;, i = 1,...,n. The following must be demonstrated for

each subproof i.

1. The refinement is valid assuming rely(c;) is never violated (we call this conditional im-
plementation),

2. hidd(c;) C hidd(d;), and

3. every transition r € steps(compose({dy, ..., dn})) is either in rely(¢;) or has an agent in
cags(c;) (since the d; are more abstract than the c;, this will typically be easier than
justifying the assumptions in terms of the ¢;).

The first two hypotheses depend only upon the components involved in subproof i and are
therefore reusable. The third hypothesis can be invalidated by the removal or modification of
components composed into d, but not by the addition of new components. It is thus partially
reusable. As with conditional satisfaction, the analyst need not consider all the d; in this
hypothesis, only those d; that provide the necessary information.

6 This is theorem mpropimpl.thm in the PVS.
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3.3.2 Related Work

The CSS Framework is descended from an earlier version developed under the Distributed
Trusted Operating Systems (DTOS) program [12, 4]. The DTOS framework dealt with compo-
sition only and had no support for refinement reasoning. It also had a more restrictive definition
of a component’s property in which rely was used in place of hidd. In addition to asserting that
the environment assumptions must be satisfied, this had the side effect of introducing an O(n?)
proof obligation (where n is the number of components) in the DTOS version of the mprop
Intersection theorem. An analyst had to show that for every pair of components (¢, d) being
composed, guar(c) N hidd(d) C rely(d). ‘

The DTOS and CSS Frameworks are both heavily influenced by the composition work of Abadi
and Lamport [2] which is couched in the Temporal Logic of Actions (TLA) {6] and by Shankar’s
composition framework [25]. TLA specifications (called formulas) are similar to CSS compo-
nents except that

» they do not have explicit agents,
» the hidd is effectively an equivalence relation on states, and
» formulas may include existential quantifiers to hide internal state.

We added agents because the performer of an action is important in certain types of secu-
rity analysis, one of our primary applications. Having agents also gives us the flexibility of
distinguishing between environment agents in our hidd. This especially makes sense when
specifying a kernel which can determine the identity of its clients and keep them separate. We
explored the introduction of quantifiers into our framework but decided against them. They
forced a great deal of complexity into the framework in terms of both verifying the framework
and using it. Having quantifiers would have introduced an O(n?) proof obligation into the
mprop Intersection theorem to show that no two components quantify over the same variable.
Although quantification has advantages from a philosophical standpoint, its practical value is
more suspect. In TLA the first step in a refinement proof is typically to remove the quantifiers
by applying a refinement mapping. This step puts the proof at what is the starting point for
the proof in our framework. If no refinement mapping can be found, then, although the re-
finement may still be correct, the proof is likely be very difficult. So, our framework makes it
easier to do the refinement proofs that are likely to be feasible at the expense of not supporting
refinement proofs that are likely to be very difficult. Finally, in TLA, composition does not
automatically apply the hidd as is done in our framework. Before applying the TLA equivalent
of the mprop Intersection theorem the TLA formulas must be modified “by hand”. Then O(n?)
proof obligations must be dispensed to show that the hand modifications are correct.

3.4 Lessons

The most important lessons from the development of the CSS Framework are reflected in its
current structure and in technical details such as not supporting quantification in component
specifications.

In our first approach to the framework we attempted to follow the Abadi-Lamport work [2]
rather closely, translating their concepts, results and proofs into PVS. These very general
results would then be applied to the specific style of component specifications used in our
framework. We expected this approach to be easier than trying to prove similar results on
our own. Through our efforts to achieve this, we gained a much better understanding of the
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Abadi-Lamport results. Eventually, we encountered some significant difficulties in following
this approach, but the understanding we gained through our attempts allowed us to overcome
these difficulties by approaching the problem from a different direction. The difficulties we
encountered stemmed from

w the central role of invariance under stuttering in the Abadi-Lamport work and the diffi-
culty of dealing with this concept in PVS,

» the complexity of including existential quantification in the framework, and
n the large size of the PVS LISP image.

We describe each of these difficulties briefly along with how we avoided them in our second
approach and how this contributed to the framework goals of ease of use, ease of verification
and sufficient reasoning power.

One of the assumptions in the Abadi-Lamport work is that the properties considered are
invariant under stuttering. This means that if a behavior ¢, satisfies some property, then
s0 does every behavior ¢, obtainable from t; by adding and deleting an arbitrary (possibly
infinite) number of stuttering steps (i.e., steps in which no state change occurs). Although
this concept is fairly intuitive, it is somewhat complicated to work with in PVS. A good
deal of mathematical machinery would be needed in the framework to effectively exploit this
assumption in the framework proofs. Although it is frequently trivial to informally compare
two ininite sequences to see whether they are equivalent up to stuttering, doing this formally
is usually a good deal more challenging, especially when there can be an infinite mumber of
places where stuttering steps have been added or removed. However, the components in our
framework trivially satisfy invariance under stuttering since the guar and hidd are required
to contain all stuttering steps. When proving theorems about arbitrary composite systems it
is much easier to work with the guar and hidd which are sets of transitions than to apply the
more abstract notion of invariance under stuttering which deals with sets of infinite sequences.
Thus, it is much easier to take components (and the properties they define) as the starting
point than to use the more general concept of properties invariant under stuttering.

While attempting to follow the Abadi-Lamport approach we did search for a simplification
of invariance under stuttering that would be easier to work with in PVS. For example, we
attempted to use a definition that allowed only a finite number of stuttering steps to be added or
deleted. However, it was eventually discovered that the simpler definition is insufficient when
dealing with existentially quantified properties (to be discussed shortly) since the quantification
can introduce an infinite number of stuttering steps. Furthermore, the simplified definitions
were still not very easy to use in performing the verification of the framework in PVS. In
the end, we abandoned the concept of invariance under stuttering entirely, relying instead
on the constraints on guar and hidd in the framework. This decision significantly reduced
the size and complexity of the framework, and this contributed to the goals ease of use and
ease of framework verification. This decision had little if any effect on the formal power of
the framework since the intent had always been to provide a component-based framework to
the analysts. Concepts such as invariance under stuttering were included only to support the
incorporation of the Abadi-Lamport proofs as general results of which the component-based
theorems would be corollaries.

A second difficulty encountered in our original approach was the complexity of quantification
in specifications. Quantification supports data hiding in a specification. For example, it allows
one to specify the external behavior of a queue (i.e,, first in, first out) in terms of a convenient
internal representation (e.g., a sequence) without making that representation externally vis-
ible. By not including quantification, we lose the ability to hide the internal representation.
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Of course, we can still prove within the framework that designs using two different represen-
tations are equivalent by showing how the representations relate to each other. Since this is
essentially what happens in a framework that supports quantification when a refinement map-
ping is applied to quantified specifications during analysis, we are really just requiring that the
refinement mapping be specified when the specifications are placed in a common state space
for analysis rather than during the refinement proof itself. This may well be a feature of the
framework since it makes the refinement mapping (i.e., the relationship between data at dif-
ferent specification levels) explicit in the specifications rather than hiding it in the refinement
proof.

It was also realized that quantification would significantly increase the burden on users of the
framework. When reasoning about composite systems, analysts would be required to show that
no two of the components quantified the same variable. This would be a pairwise, O(n?) proof
obligation. As with invariance under stuttering, the decision to avoid quantification improved
ease of use and verification, and it reduced the size of the framework. Any practical reduction
in reasoning power is minimal since it is usually quite difficult to perform a refinement proof
without using a refinement mapping. Not having quantifiers makes it impossible to do certain
refinement proofs that are probably impractical to perform anyway. At the same time it
simplifies the proofs that are practical. -

We have already mentioned that the decisions to focus on components rather than stuttering-
invariant properties and to not support quantification resulted in a smaller framework. Aside
from concerns of ease of use and learning curve, this had some very practical hardware resource
implications. In the original approach we noted that the PVS Lisp image was getting quite
large (e.g., 50-60 Meg for just the framework). We realized that this might have an impact on
usability of the framework both in terms of the hardware demands and the slower speed of
PVS when the image gets large. We were able to significantly reduce the image size in going to
the new approach.

3.5 Future Work

As noted in Section 2.4, the Assurance in the Fluke Microkernel program is currently using
the CSS framework to analyze secure process creation and to study the support of dynamic
security policies in a distributed environment.

One goal of the CSS program was to demonstrate that composition and refinement could be
used for a variety of analyses necessary in designing systems, especially secure systems. It
would be interesting to continue this demonstration by considering other types of analyses.
For example, the framework could be used to study analysis of real-time properties (see [1]).
This not only has broad relevance outside security, but could also be applied to the analysis of
security mechanism such as real-time audit. Another area that might be fruitful is the analysis
of cryptographic protocols, especially in an environment where the protocol is implemented by
cooperating (and potentially reusable) components.

Finally, we anticipate that a variety of evolutionary improvements could be made to the frame-
work itself. It could be fine-tuned for ease of use, clarity of organization, quality and quantity
of documentation, small size, etc.
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Section 4
Top Level Specification

4.1 GQGoals

The Top-Level Specification (TLS) effort was intended to serve several purposes, the foremost
of which was to provide a starting point for the design refinement work and the portion of
the fault tolerance effort in which an existing specification (the TLS) is modified to be fault
tolerant. The TLS also serves as an example of how to specify system components within the
CSS Framework. In doing this we took the position (shared by earlier programs such as DTOS
[13]) that a component specification has multiple audiences and ought to be readable by all
of them. Thus, it should contain not only formal notation but also other representations of
the specification such as English text and processing tables (e.g., case coverage tables). We
furthermore took the stance that a formal system model ought to be refined in parallel with
the system design effort and that throughout this refinement process it is important to keep
the formal and informal descriptions consistent.

4.2 Approach

The chosen functionality to be specified in the TLS was network-transparent, distributed, in-
terprocess communication (IPC). To better explore the refinement of a design from high-level
requirements to a detailed design we included two levels of abstraction within the TLS itself
(the network server from the second level is further refined in the Refined Design Report). The
high level specification consists of a single component called the Box Manager. The purpose of
this specification is to describe the high-level requirements that characterize IPC. Communi-
cation is controlled by capabilities which may be transmitted in messages. The Box Manager
maintains these capabilities and manages communication boxes that serve as containers for
messages in transit. The refined description of the system contains components for kernels,
network servers, and a network. This level spells out the details of a particular refinement of
the Box Manager into a networked system with multiple nodes (kernels), network servers and
a network. The network server components act as forwarding agents that forward node-local
messages to network servers on remote nodes for delivery to the appropriate remote client and
that forward messages received from the network to the appropriate local client.

To address the goal of close correspondence between formal in informal representations, we
organized each of the four component specifications in the TLS as a series of pairs of text and
formal specification (PVS) elements. This makes it easier to visually inspect the descriptions
for consistency. We also included case-based processing tables. (See Section 8 for information
on the Specification Browser which further encourages consistency between the descriptions.)

4.3 Accomplishments
The TLS was the first attempt at specifying a system using the CSS Framework at two levels of

abstraction. Having two levels proved to be very useful. First, it allows the critical properties
of the system to be proved at a more abstract level where the proofs will typically be much
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easier. Meanwhile, the more detailed level reflects design decisions that will eventually be
followed in an implemented system. This level has a stronger resemblance to the implemen-
tation. Combining these two levels and showing that one is a refinement of the other thus
provides important guidance and assurance to the design effort. No significant problems were
encountered in specifying the system at multiple levels although we did not have sufficient
time to perform a PVS proof that the kernel-network level is a refinement of the Box Manager.

The TLS was also the first attempt at defining and composing components without the use of
state and agent translators which were used heavily in applications of the DTOS Framework.
The framework requires that all components to be composed are defined on & common “uni-
versal” state. However, when defining a single component it would be undesirable to have to
anticipate the state information of all the other components with which the current compo-
nent might someday be composed so that that state information can be included. This would
make it much harder to reuse component specifications in new ways and would thus reduce
one of the main benefits of the framework. So, the approach in the DTOS framework was to
define each component on an separate state type, define a global state that contains all the
state information, and then define translator functions that map each local state to the global
state. It was noted on DTOS that this was fairly clumsy. In addition to the work of defining
the translators, significant portions of the proofs about the system dealt with “applying” the
state translations. Since the translations themselves were usually trivial project functions,
there was no value obtained for this effort. Furthermore, it was realized that if we ever used
non-trivial translators, the translators themselves could obscure the true nature of what was
being proven about the system.

So we developed an alternative approach that has been used throughout the CSS work—and is
also being used in the Assurance in the Fluke Microkernel program (see Section 2.4)—that does
pot require translators.” This approach has worked quite well. As in the translator approach,
for each type of component we define a local state type, ignoring possible overlaps with other
components. Shared data types and global “configuration” information are defined in a low
level PVS theory called config which is imported by all other state models. The local state
definitions are combined in the theory common _state with a separate field for each local state.
Each component is defined directly on the common state but all of its accesses are to its local
portion of that state via the appropriate field accessor function. Thus, the component really
only depends upon its local state. As components are added or removed, the changes to global
state are isolated to the two theories config and common state. Since each component is defined
with respect to one field of the common state, the addition or removal of fields has no effect on
the other components nor their proofs. This provides the desired reusability of specifications
without the use of translators.

In the fault tolerance work we considered using the Box Manager as an abstract specification
of communication between the fault tolerance components. However, the fault tolerance com-
munication requires first-in first-out (FIFO) communication that this is not specified in the Box
Manager. Thus, the specification of IPC in the Box Manager may be too general for some po-
tentially profitable uses. FIFO was not needed for the critical properties that were anticipated
when writing the Box Manager, and omitting this requirement resulted in a simpler specifi-
cation. This is likely to be a perpetual question in writing specifications: what requirements
ought to be specified to give the specification broad application without making it too large,
complex or cluttered.®

7In fact, the concept of translators has been removed entirely from the framework.

8On the Assurance in the Fluke Microkernel program we are currently exploring an approach that could be used
to alleviate this problem. New requirements can often be added by composing in a new system component at the
requirements level that further constrains the system to obey the new requirement. Thus, a FIFO component could
assert that the communication mediated by the Box Manager must be FIFO.
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4.4 Lessons

The lessons from this task relate closely to the achievements described in the previous section:

a State and agent translators are not necessary.
» Specifying a system at multiple levels of abstraction has significant advantages.

= It is not always easy to reuse a specification because the needs of its new use might not
match those of its earlier use.

The first lesson is important for the usability of the CSS Framework. Given prior experience
in the field of formal methods, the second and third lessons hardly seem surprising.

4.5 Future Work

One thing that we had hoped to do but for which we had insufficient time was to perform a PVS
proof that the kernel-network level is a refinement of the Box Manager. We expected to learn
some things about refinement arguments and about high-level specifications by doing this. In
particular, this refinement step moves from a high level in which clients can directly refer to
boxes to a low level in which they reference them indirectly through names in a name space that
the kernel maintains for each client. This is likely to introduce complexities into the refinement
mapping. Furthermore, we expect this refinement from direct to indirect references to be a
common theme in refinement arguments since it is much easier to analyze critical properties
when direct references are used, yet the underlying implementation will frequently provide
only for indirect references.
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Section 5
Design Refinement

5.1 Goals

' One of the main goals of the CSS Framework is to support the refinement of an abstract design
to a more detailed one. The goal of the Design Refinement task was to demonstrate the use of
refinement. In particular, we wished to

s refine the network server specification in the TLS which served as the abstract design,
s explore any issues in refining a design,

s provide an example of refinement analysis, and

» test the refinement portion of the framework.

5.2 Approach

To demonstrate the use of the framework for refinement reasoning, we refined the abstract
design for a network server from the TLS. The network server acts as the interface between a
kernel and a network. The sole function of the network server is to act as a “forwarding agent”
for messages being passed between tasks on the local node and tasks on remote nodes. The
operations of the network server implement two high level actions: receive a local message and
forward it on to a remote network server, and receive a message from the network and forward
it on to a local client.

The network server specification does give a fairly detailed description of the processing re-
quired to carry out forwarding operations. However, the network interface is left extremely
abstract—the network is viewed as a bag of messages, and message transmission is specified
as addition to and removal from the message bag. The next step was to refine this abstract
design to a traditional layered protocol stack architecture. We refined message transmission
to the level of IP packets and frames being transmitted via an Ethernet medium. We adopted
the z-Kernel architecture [5] as a model for our protocols; the modularity and clean interface
definition of z-Kernel protocols work well with the CSS framework and provide a versatile
specification paradigm for defining protocol components. In particular,

» The z-Kernel separation of protocols is easy to specify in our framework and reinforces
the design objectives of composition. In essence, the z-Kernel protocol architecture is a
compositional framework.

» The flexibility of the z-Kernel architecture allows maximal benefits from re-usable anal-
ysis. By enforcing strict modularity on its protocols, the z-Kernel allows systems to be
easily reconfigured, thus providing an opportunity for re-usable components.

s Uniformity of z-Kernel communication allows re-usable transition specifications. The
transitions that define the open and demux operations in the z-Kernel architecture are
generic—they are virtually the same for all protocols.
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Our z-Kernel stack consists of CSS components implementing the following seven protocols:

=« FWD This component is not strictly a protocol in the sense defined by the z-kernel
architecture; it has an interface with the lower protocol—DNS—but it does not present
the standard interface for communicating with higher protocols (it communicates with
a local kernel component.) The FWD protocol is specified in the same format as the
lower protocols and for simplicity we include it in our stack definition. The FWD protocol
implements the forwarding operations of the network server, but unlike the network
server component in the TLS it relies on the lower protocols for transmission of messages
across the network. :

s DNS This protocol specifies a simple domain name server for maintaining bindings be-
tween local host names and IP addresses. Our specification does not allow dynamic
bindings; rather we use a static look-up table for address translations.

» DSS A digital signature protocol for signing messages. The signatures are not visible at
the user level; they are used between remote stack instances to ensure message authen-

ticity. We do not specify a particular signature algorithm.

» DES A message encryption protocol for maintaining message confidentiality. Again we
do not specify a particular algorithm.

a TCP A protocol for managing communication sessions, modeled on the standard Trans-
mission Control Protocol as described in the Internic RFC 793. We do not implement the
full functionality defined in the RFC standard; in particular we specialize the protocol to
handle non-interactive one-way transport of IPC messages.

= IP A protocol for implementing best-effort connectionless packet delivery, modeled on the
standard described in the Internic RFCs 791, 950, 919 and 922.

» ETH This protocol represents a simple Ethernet driver. It maintains bindings between
IP addresses and physical addresses; we do not model the acquisition of bindings through
the ARP protocol, but rather specify that bindings are contained in a static look-up table.

5.3 Accomplishments

One accomplishment of this task was the demonstration that the CSS Framework supports
the specification of an z-Kernel protocol stack very well and that the z-Kernel architecture is
especially appropriate for a component-based specification and analysis style. The clean design
of the z-Kernel architecture makes a component-based specification particularly convenient.
The consistency of interface between the protocol components makes it easy to reuse pieces of
the specification and analysis.

We also outlined the proof that the stack is a refinement of the abstract network server. The
refinement analysis technique is very valuable for analyzing complex pieces of software such
as a network stack. The high-level specification of the network server abstracts out the many
details that are needed for realistic network communication, focusing instead on the high-level
behavior required of the communication mechanism. This makes it much easier to prove that
the overall system of which the network server is only a part has the desired properties. This
proof would be much more difficult if the full network stack were included in the analysis. On
the other hand, the abstract network server must eventually be implemented and this means
dealing with all the complex low-level issues that are necessary to communicate over a network.
Refinement analysis allows an analyst to specify the low-level details (to whatever extent is
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deemed necessary) and to then show that the resulting network stack is a refinement of the
abstract network server. This increases the confidence that the implemented system preserves
those characteristics of the abstract design that were essential in proving the desired high-level
properties of the system. » : o

5.4 Lessons

One interesting realization that came from this work is that fairness conditions in a high-level
specification can never be entirely implemented (i.e., without specifying fairness conditions)
at lower levels—there must be some fairness condition at each refinement level. Even though
a specific scheduling algorithm might be added at lower levels to define how the high-level
actions governed by fairness conditions are scheduled, it will still be necessary to include a
fairness condition requiring that the scheduler itself be treated fairly.

The other main lesson deals with the care required in writing the specifications at both the
high and low levels to ensure that the refinement is in fact valid. At the high level, one must
fight the strong tendency to overspecify the system. There are several advantages that might
typically be obtained by keeping the abstract specification as unconstrained as possible:

» It will have greater potential for reuse since there will be more ways to refine it.

s It will be easier to show that a given implementation is a refinement of the abstract
specification since there will be fewer constraints that must be demonstrated of the im-
plementation.

» It might even be easier to prove that the abstract specification satisfies the desired critical
properties since there will be fewer details that might clutter and obscure the proof.

At the low level, one must be careful not to make tacit assumptions derived from the high
level. For example, if one component is split into many we must be sure to specify the allowed
interactions between the low-level components so that they cannot do things to each other that
the ?igh-level component cannot do to itself. Otherwise, the refinement argument will likely
fail.

We also learned that specifying a component in the “simplest” way can sometimes introduce
subtle, undesirable constraints.!® Consider an abstract component ¢ that has two variables,
i for input and o for output. At any time it can decide to copy i to o. It does not allow any
other changes to 0. Now assume that we wish to refine ¢ to consist of a series of network stack
components with a network. The variable i corresponds to one end of the communication and the
variable o to the other. Each intermediate component performs copy operations. Unfortunately,
this is not a valid refinement. At the high level, if o changes, it must change to the value in i.
However, at the low level, it may change to the input value of the final network stack component
in the chain, and this value need not equal the input value for the first network stack component
in the chain. The problem is that the specification for ¢, although simple, is too constrained. It
asserts that ¢ can deal with only one value at a time. This prevents refinement to a low level
in which multiple values are in transit. We can make c less constrained by allowing it to keep
additional internal state to hold the values in transit. Depending upon the properties needed
in ¢, this state could be a queue, a set or a bag (i.e., a “set” that can contain multiple copies of
the same value). The low level discussed above is a refinement of this regardless of which of
the three options is selected.

9 This was also observed in the fault tolerance task.

10This observation also arises from the fault tolerance proof-of-concept work where the initial specification of the
fault-free model was very simple but too constrained to allow the intended refinement.
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5.5 Future Work

We had insufficient resources on the program to complete the refinement analysis in PVS.
Since the process of doing such proofs (and in particular, ‘machine checked proofs) frequently
uncovers errors in the specifications it would be valuable to perform more of this analysis. We
expect that more could be learned about the kinds of errors that occur in refining a specification
and how those errors might be avoided.

In Section 3.3.1 we discussed impure decomposition of refinement proofs and the support
provided by the framework for these decompositions. However, the examples considered on
this program all ended up involving pure decompositions. As a test of the theorems for impure
decomposition, it would be valuable to work an example that involves impure decomposition.
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Section 6
Fault Tolerance

6.1 Goals

The purpose of this task is to demonstrate the use of composition and refinement for the spec-
ification and analysis of fault-tolerant systems. This effort included not only specifying new
systems but also modifying existing systems to be fault tolerant. The composition framework
lets us reason effectively about a system as a set of components. Fault-tolerant systems possess
certain characteristics that make them well-suited for analysis within a composition frame-
work. For example, potentially faulty components are replicated to achieve fault tolerance. The
composition framework lets us reason about one replica and reuse the analysis for the other
replicas.!’ Fault tolerant systems also have certain unique requirements, such as the need to
replicate the inputs to all replicas and to vote across the outputs of all replicas. The composition
framework let us model these unique requirements as separate components, which keeps the
model flexible. This task also demonstrated how to modify an existing specification (the TLS)
to make it fault tolerant.

6.2 Approach

Before describing our approach, it is useful to understand certain facts about fault tolerant
systems. A system is fault-tolerant if it behaves like a fault free system even in the presence of
faults. Our focus is on hardware fault tolerance, i.e., the ability of a software system to tolerate
faults that originate in hardware. Hardware fault tolerance differs significantly from software
fault tolerance, i.e., the ability of a software system to tolerate software-induced faults. Butler
[3] argues that the standard method for achieving hardware fault tolerance, i.e., component
replication, is not effective for software fault tolerance, because the conditions that cause
software faults cannot be isolated easily.

Schneider [11] describes two classes of hardware-based faults:

1. fail-stop: a faulty component transitions to a state where other components can detect its
failure, and then stops, and

2. Byzantine: a faulty component acts arbitrarily or even maliciously.

A t fault-tolerant system exhibiting Byzantine failures must have at least 2t + 1 replicas to
ensure a correct vote, while the same system exhibiting fail-stop failures requires only ¢ + 1
replicas. According to Schneider [11}, every nonfaulty replica should receive every request
(AGREEMENT), and every nonfaulty replica should process the requests it receives in the same
order (ORDER). AGREEMENT is satisfied when the client transmits the same request to all
replicas. ORDER is satisfied when all nonfaulty replicas obey a request sequencing protocol
that causes them to process requests in the same order.

The fault tolerance composition study is divided into two phases:

11We did not follow that approach here, because our replicas were very simple.
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1. Proof-of-concept. Study the specification and verification of fault tolerance properties
from a composability perspective.
The proof-of-concept introduces the key concepts for a fault tolerant system: the replica-
tion of the potentially faulty component, a replicator component to provide inputs to all
of the (potentially faulty) replicas, and a voter component to combine the outputs of the
replicas.
These results are presented in The Fault Tolerance Analysis Report, CDRL A009 [18].

2. TLS modification. Extend the Top-Level Specification (TLS) CDRL A004 [15] to include
fault tolerance properties. :
The TLS describes four components: an abstract component called the Box Manager and
its implementation in three components, the kernel, the network server and the network.
Our focus was on the implementation. We assumed that the network server may be faulty,
and we proposed a fault-tolerant architecture that replicates the network server and its
associated network.

These results are presented in The Modified Top Level Specification, CDRL A008 [20].

6.2.1 Proof-of-Concept Approach

In the proof-of-concept phase, we proposed a simple fault tolerant model and demonstrated its
validity by postulating a fault free model and proving that the fault tolerant model behaves
like the fault free model. The fault free model consists of a single state machine S that accepts
requests from its environment and generates responses. State machine S supports three

transitions (see Figure 1):

1. If a new request arrives over the recv interface, it is placed on the queue unproc for
unprocessed messages.

2. If unproc is not empty, remove the request at the head of unproc, process it via
process_msg : message, proc.state — (message, proc_state),

place the result (the response) on the processed message queue proc and update the
processing state. process_msg takes a processing state as well as the message because
the state may influence the response. In addition to the response, it returns a processing
state so that we may consider state machines whose response depends upon the history

of past processing.
3. If proc is not empty, the head response is removed and transmitted over the send
interface.

The two queues, unproc and proc, make possible the refinement to the fault tolerant model
which can have multiple messages in progress.

There are few constraints on S or its environment. Requests issued by a single client to S are
processed by S in the order they were issued. The interaction between clients is invisible in
our model because clients are part of the environment.

We developed an abstract representation of network communication using a shared interface.
When component A wishes to send a message m to component B, it places m in the variable
msg that it shares with B and sets the done flag to FALSE. Component B recognizes that a
new message has arrived when it detects that done is no longer true. B extracts m from msg
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Figure 1: The Fault-Free Model

and sets done to TRUE. The shared interfaces are configured so that messages are transmitted
in one direction only. If B needs to reply to A, it uses a different interface. Each component has
an interface for outbound messages, called send, and an interface for inbound messages, called
recv, except for the replicator, which has three outbound interfaces, and the voter, which has
three inbound interfaces. The send interface of a component is equated with the recv interface
" of the component to which it sends messages. The communication model satisfies Schneider’s
assumption that communication between components is FIFO and nonfaulty, i.e., messages are
not randomly created, mangled or lost. Each component specification must constrain how the
interface is modified. Since this behavior is similar from component to component, we defined
helper functions to simplify the task.

The fault tolerant model (see Figure 2) assumes S may be faulty. It replicates S, yielding S1,
S2 and S3, and adds a replicator R and voter V. We introduced a third component, a fault
generator, to avoid modifying S to generate faults. We associated a fault generator (F1, F2
and F3, respectively) with each replica to generate any faults that might occur in the replica.
The number of fault generators that can be in fault mode is limited by the failure class, i.e.,
fail-stop or Byzantine. If the failure class is fail-stop a fault generator in fault mode discards all
messages. If the failure class is Byzantine, a fault generator in fault mode behaves arbitrarily.
If a sufficient number of S replicas agree on their cutput and if this output matches the output
of the single, fault free S for all given request sequences, then the proposed model is fault
tolerant.

The relationship between the fault tolerant model and the fault free S is indicated by the
dashed box in Figure 2. Note that while R accepts messages for all sending clients, there may
be a different V for each receiving client.

Figure 2: The Fault Tolerant Model
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We modeled only three replicas, because three is the smallest number of replicas that make
reasoning about Byzantine behavior interesting. We could have avoided specifying the number
of replicas since the number of replicas needed is a function of the number of tolerated faults: to
tolerate t faults, ¢+ 1 replicas are required in the fail-stop case and 2t +1 replicas are required in
the Byzantine case. Modeling a specific number seemed a simpler task for the proof-of-concept,
and it still demonstrates the approach. Our model explicitly assumes t < 1 for the Byzantine
case and it allows as many as two faults for the fail-stop case.

Request ordering is a critical issue for fault tolerant systems. Without it, voting may be
impractical. Request ordering is also crucial for the consistency of the internal state of the
nonfaulty replicas. Schneider [11] described three protocols that ensure that all replicas process
the same sequence of requests. Two protocols are clock-based, while the third lets replicas
determine the proper order among themselves. In general, Schneider’s protocols are “earliest
first”. However, the strategy itself does not matter, only that all replicas adopt the same strategy.
The fault free model assumes nothing about the sequence of requests from S's environment. S
processes the requests in whatever order they arrive. In the fault tolerant model, we had to
ensure that replicating S and introducing a new component to handle request dissemination
did not affect the order of requests.

Initially, we considered implementing one or more of Schneider’s order protocols; however, we
discovered that each protocol introduces significant complications for our analysis. The clock-
based protocols require that each client attach a timestamp to each request. We could either
require this behavior of the client or introduce another component to perform the task on behalf
of the client. A similar component would be required at each replica to arrange the requests
according to their timestamps. Schneider’s third protocol introduces significant inter-replica
communication and requires yet another component (different from the clock-based protocols).
We realized that additional constraints would be needed on the fault free model in order to
prove that the fault tolerant model, observing a particular request order protocol, implements
the fault free model. For example, if the fault tolerant model ordered requests by timestamps,
we would have to constrain S in the fault free model to also order requests by timestamps. As
a result, there would exist several fault free/fault tolerant model pairs, each flavored by the
chosen request order protocol. To simplify the problem, we avoided implementing any of the
protocols.

Instead we adopted a much simpler approach. The requirement for a request ordering protocol
is motivated by the presence of multiple request replicators, one for each hardware node that
supports clients. However, if all client requests are processed by a single replicator, and if that
replicator forwards requests in the order that it receives them, then the replicator looks like the
single S to the clients. Thus we are guaranteed that the fault tolerant architecture processes
the same sequence of requests as the fault free architecture, because the entity that determines
the order of requests is the environment, which is the same in both models. We simplified the
problem by moving request ordering outside the model and into the environment.

The single replicator approach would not likely be implemented, because the replicator (or
rather the hardware node on which it resides) could be a single point of failure; however, for
modeling purposes we assume that the replicator is fault free. We realized an important advan-
tage with the single replicator: we get ORDER for free. It is also trivial to demonstrate, given
the design of R and the fact that only R transmits requests to the replicas, that AGREEMENT is
satisfied.

Note that we solved a slightly different problem than Schneider. He focused on practical
implementations for satisfying ORDER. Each of his order protocols includes a stability test to
determine the next request to process, and he proved that the test is sufficient. We avoided
stability tests by letting the environment determine the request sequence.
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The trickiest problem for the voter is vote synchronization, i.e., ensuring that the tabulated
result is based on a set of votes that are all responses to the same request. Communication
delays or other problems may prevent some votes for a particular request from reaching the
voter in a timely manner. Since we assume nothing about the vote itself, the voter must rely
on other information for synchronization.

A voting session occurs when the voter receives a sufficient number of votes (as determined by
the failure class) for a particular request. An obsolete vote is a vote that misses its intended
voting session. The synchronization algorithm is very simple. A counter is associated with each
voting replica. When the voter receives enough votes to constitute a voting session, it notes
which replica(s) did not vote and increments the counter associated with that replica. When
a replica votes and its counter is greater than zero, that vote is discarded and the counter is
decremented.

There are several constraints on the fault tolerant model:
» It must be configured properly. In other words, the shared interfaces must be assigned
between components such that communication occurs only as we require it.

» All appropriate components must agree on the failure class. The fault generators and the
voter must agree whether the failure class is fail-stop or Byzantine.

» There may not be too many “active” fault generators for the failure class. We allow at most
two faults in the fail-stop case and only one fault in the Byzantine case.

s The receive interface and send interface for S in the fault free model must correspond to
the receive interface for R and the send interface for V, respectively, in the fault tolerant
model. This constraint is necessary to prove that the fault tolerant model implements the
fault free model.

Next, we considered the proof that our fault tolerant model is indeed fault tolerant, i.e., it
behaves like a fault free system in the presence of faults. The argument is divided into two
obligations:
1. the fault tolerant system only allows the behaviors allowed by the fault free system, and
2. the fault tolerant system allows all behaviors that the fault free system allows.

Obligation 1 is stated formally as
implements(compose({ R, S1, 52, S3, F1, F2, F3,V}), S) 1)

That is, every behavior allowed by compose({ R, S1, 52, S3, F1, F2, F3,V}) is allowed by S. This
proof was broken further into two subproofs:

1. (Initial State) Show that every initial state of compose({R, S1, S2, 53, F1, F2,F3,V}) is
allowed by S.

2. (Steps) Show that every transition allowed by compose({ R, S1, 52, 83, F1, F2, F3,V}) is
allowed by S.

These proofs rely on constraints, supplied by the refinement mapping, that define a state of S
corresponding to each state of compose({ R, S1, 52, S3, F1, F2, F3,V}). The initial state proof is
satisfied easily by relating the external interfaces of the two models and considering the init of
Rand V.
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The steps proof is more challenging. The goal of the steps proof is to demonstrate that every
state transition allowed by the fault tolerant model is also allowed by the fault free model under
the interpretation supplied by the refinement mapping. First we must show that any transition
allowed by the hidd of every fault tolerant component is allowed by the kidd of S. Then we
must show that for every fault tolerant component, every guar transition (when restricted to
the set of transitions allowed by all fault tolerant components) is a transition allowed in the
fault free model.

Unfortunately, in the course of attempting the formal proofs, we discovered several errors in
the specification that prevent the proof from working. These errors are in the form of omitted
constraints in the hidd of the fault tolerant components. The proofs can be completed if the
following missing conditions are satisfied:

s The unproc, proc and proc_state of each S; component are considered local to that
component and can be changed only by agents of that component.

= No agent for a fault tolerant model component can write a message to R’s receive interface.

s Similarly, no agent for a fault tolerant model component can determine that communica-
tion over V’s send interface is complete.

These corrections would not be difficult to make in the formal specification; however, there were
insufficient resources to do so and complete the proof. Higher priority was given to providing a
detailed informal proof in the report [18].

The second obligation is stated formally as
implements(S, compose({R, S1, 52,53, F1, F2, F3,V})) 2)

In practical terms, the fault tolerance proof requirement stated earlier is unnecessarily strong.
Rather than prove that the models are equivalent, it is most interesting to prove that the
fault tolerant mode! does not exhibit behaviors prohibited by the fault free model. This is
sufficient to show that critical properties demonstrated for fault free are satisfied by the much
more complicated fault tolerant architecture. Other methods, such as testing, can be used
to demonstrate that the fault tolerant model exhibits a non-trivial subset of the behaviors

permitted by the fault free model.*?

Finally, we considered the application of our model to a simple example: enforcers and deciders.
We argued that enforcers are like the clients of our fault tolerant model, and deciders are valid
instances of S. Thus, faults in the deciders could be tolerated by replicating the deciders.

6.2.2 TLS Modification Approach

For the second phase of this task, we modified the architecture described in the TLS to be fault
tolerant. We introduced a replicator R and a voter V, and we replicated the potentially faulty
NS. The modified architecture is illustrated in Figure 3.

If the client C wishes to send a message to client C’ on a different node (kernel), it submits the
message on its interface with the kernel K, using its local name for C". Ina fault free system,
K would remap C’s local name for C’ into a port to which a network server NS is listening.

12There is no possible refinement meapping in this direction since multiple fault tolerant states correspond to each
fault free state. Thus, a formal proof of this case within the framework is not possible. If quantification were included
in the framework, the proof would be possible in principle, but probably very difficult.
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Figure 3: Fault Tolerant TLS Architecture

The NS would forward the message over the network N to an NS on the node shared by C'.
This NS will submit the message to its kernel using its own local name for C'. The receiving
K would place the message on a port to which C’ is listening. (For a more thorough discussion
of communication in the TLS, see the TLS report [15].)

In a fault tolerant system, however, K remaps all of C’s local names into ports to which the
replicator R is listening. R then copies the message (via K) to three different NSs. Each
NS transmits the message over an N. At the receiving node, at most three NSs receive the
message. Each NS forwards its message, via the receiving K, to a different port to which the
voter V is listening. V determines the proper response and submits the message, via K, to the
client C'.

In the unmodified TLS, clients may also exchange send and receive rights, and the kernel
and network servers are responsible for configuring the desired communication path. Unfor-
tunately, the algorithm is complicated significantly by the replication of the network servers
and by the introduction of the replicator and voter. Due to the limited scope of this effort,
we assumed that the communication paths are in a steady state and that only ordinary data
messages are passed between clients in the modified TLS.

Instead of introducing a separate fault generator for each NS replica, we modified the network
component to exhibit controlled faults.!3 If a sender-side network server is deemed faulty, the
associated network component will exhibit faulty behavior. We assume that all receiver-side
network servers are fault free.

Our task was divided into three subtasks:

» Specify R and V in the context of the TLS.

R and V here are slightly different from the correspondmg components in the proof-of-
concept task, because the communication interface here is more complex. Both compo-
nents will use the kernel interface for all communication.

s Modify N to generate new faults in controlled conditions.

Currently, N bhas two behaviors: it either transmits messages successfully or it randomly
loses them. We needed to add a new behavior, the ability to modify a message, and we had
to control when these behaviors occur. As in the proof-of-concept task, we designated a
subset of N components to be faulty according to the failure class (fail stop or Byzantine).
N exhibits faults whenever the associated sender-side NS is considered faulty.

» Constrain the global state as required for fault tolerance.

13The network in the unmodified TLS includes faults, but they occur nondeterministically. We needed to ensure that
certain networks (actually network servers) are fault free.

27




6.3 Accomplishments

The proof-of-concept demonstrated that the composition framework is a practical tool for ana-
lyzing fault tolerance properties in real systems. For example, we enhanced S to allow faults
without changing S; instead, we composed it with a fault generator. The component spec-
ification clearly distinguishes the assertions that a component makes about itself from the
assumptions it makes about its environment. Thus, the relationships between components
are more obvious. This quality was particularly important for specifying the communication
model. The only limitation is that the framework did not support the proof that the fault free
model is a refinement of the fault tolerant model, so we demonstrated that result informally.
However, this limitation is a problem for refinement mappings generally, not just with the
framework. Performing a refinement proof without a refinement mapping requires reasoning
directly about infinite sets of infinite sequences, which can be very difficult. Supporting this
type of proof would also add significant complexity to the framework, and the dubious benefits
do not justify the effort required.

In the proof-of-concept, we simplified the models whenever possible, for example:

s There are exactly three replicas, instead of an arbitrary number.

» The single replicator R is a convenient abstraction for the request order protocols described
by Schneider.

s The voter V uses a simple exact-match voting strategy.
s The communication model is based on a shared interface.

» The replicas and S invoke the same, undefined function: process.msg. We assume
pothing about process.msg so that almost any processing function is an instance of it.

We adopted most of these simplifications for the TLS modification task, and we added new
simplifications as necessary:

a We assume that only ordinary data messages are passed through the system, i.e., no
rights are passed between clients.

= We compromise on a “partially fail-stop” network component. In the existing network
component specification, a non-faulty network would never do anything whereas a faulty
network could destroy messages. This notion is inconsistent with the concept of a fail-
stop system in which a non-faulty component performs correct operations and a faulty one
does nothing. Rather than change the network component into a more active entity, we
leave the possibility that correct data might sometimes be available over a faulty network
replica and other times be absent.

s We recognize that we cannot enforce FIFO message delivery in the current network
component as specified, so we assume that the network component will be implemented

to enforce the requirement.

6.4 Lessons

This task demonstrated that the composition framework lets us separate concerns in the spec-
ification. Specifying the replicator, voter and fault generator as separate components in the
proof-of-concept kept the models very general. It also meant fewer changes to the TLS, since
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most of the new behaviors could be specified within separate components. Most existing TLS
theories were not changed.

We also realized significant savings by letting a single replicator abstract the various message
ordering algorithms described by Schneider [11]. As is typical in research projects, we explored
many “dark alleys”. Before realizing the opportunity of a single replicator, we spent much time
considering which message ordering algorithms to model and exploring modeling approaches.
We also considered using one of the communication mechanisms in the TLS (i.e., either the ker-
nel or the box manager) for the proof-of-concept task. However, these mechanisms introduced
more overhead than we desired.

6.5 Future Work

While we argued informally in the proof-of-concept task that the fault tolerant model behaves
like a fault free model, it would have been nice to complete the proof using the composition
framework. It would have also proved interesting to model one of Schneider's message order-
ing algorithms. Both the proof-of-concept and the TLS modification could be generalized by
allowing an arbitrary number n of replicas. The model would define ¢t as the mumber of allowed
faults, and n would be function of ¢, according to the failure class.!* We settled on three replicas
because it was not necessary to burden the model with the additional complexity in order to
satisfy our goals.

The modified TLS could be improved in the following ways:

» Add support for the passing of send and receive rights.

s Modify the network component to exhibit pure fail-stop behavior and to support FIFO
communication.

In subsequent applications of the framework, we have realized additional areas for improve-
ment. For example, the proof-of-concept specification could be generalized by adopting a
requirements-oriented, rather than design-oriented, specification approach.

3 For an example of a specification of this style, see the CSS TLS [15).
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Section 7

Policy Composition

7.1 Goals

The policy composition task explored how to incorporate prior work on policy composition into
the CSS composition and refinement framework. The goals of this effort were to:

» extend the framework to provide for composable noninterference analysis, and
s study the composition of differing security policies

Some types of security policies can be represented as Abadi-Lamport properties. For example,
access control policies such as Bell-LaPadula security can be represented as safety properties
asserting that all transitions that occur are consistent with the access control policy. For these
policies, the existing CSS framework is sufficient since it provides machinery for reasoning
about Abadi-Lamport properties in general. However, one commonly used type of security
policy, namely information flow policies, cannot be addressed using Abadi-Lamport properties.
The goal of this effort is to investigate how information flow policies can be addressed within
the CSS framework.

7.1.1 Information Flow Policies

The difference between an access control policy and an information flow policy is somewhat
subtle. The original motivation for information flow policies was to address the covert channel
issue in multilevel secure (MLS) systems [8]. A common example of a covert channel is the use
of file access times in Unix to signal information. Each file has associated with it an access
time indicating the last time the file was read. An MLS version of Unix would check to ensure
that the process reading a file is at or above the level of the file before allowing the read to
proceed. In the case of a high level subject reading a low-level file, this MLS check would allow
the high level subject to change the access time for the low-level file as a side-effect of reading
the file. Even though the high-level read of a low-level file is allowed by the Bell LaPadula
access control policy, the downward flow of information as a side effect is undesirable.

Information flow policies were developed to address the covert information flows resulting from
side effects. In a system satisfying a flow policy, there should be no such covert flows. A variety
of such policies have been developed, but we chose to focus on McCullough'’s Restrictiveness [7]
and Rushby’s Noninterference [10]. At the heart of both policies is:

s for each system event e, a mapping to a security domain L(e),

» functions inp and out that test whether events are inputs or outputs,

s a flow relation d; ~ d, indicating when information is permitted to flow from a security
domain d; to a domain d-,

s for each domain d an equivalence relation =4 indicating when two states appear identical
from the standpoint of d
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From these constructs, security requirements such as the following are constructed:!®

a inp(e) A (L(e) 4 d) A leadsto(sty,e)(stz) = sty =4 sty

m inp(e) A (L(e) ~ d) A leads_to(sty,e)(st2) A st; =4 stz A sty =p() 63
= sty : sty g sty A leads_to(sts,e)(sts)

s out{e) A leads_to(st;,e)(slz) A sty =4 si3
= 3b:out(b) A (e) =ab A sty =4 st4 A leads_to(st3,b)(sts)'®

Here, leads_to(st; , €)(st;) indicates that event e can cause a transition from st, to st;. The actual
security requirements for Restrictiveness and Noninterference vary from the above depending
on whether the system specification allows nondeterminism and whether the flow relation is
transitive. A system allows nondeterminism if the same input event and starting state can
lead to more than one resulting state. A flow relation is transitive if whenever flow is allowed
from d; to d, and from d; to ds, then flow is also allowed from d; to ds.

The reason information flow policies are not Abadi-Lamport properties is that Abadi-Lamport
properties are simply sets of component behaviors. The above security requirements do not
uniquely define a set of component behaviors. Instead they comprise a test that can be per-
formed on a set of behaviors to determine whether the associated system is secure. This has
led people to refer to information flow policies as “properties of properties”. In any case, the key
point is that they are not Abadi-Lamport properties and hence a different approach is needed
to reason about the composition of information flow policies.

7.2 Approach
Restrictiveness has previously been shown to be composable in that:

If each system in a collection S satisfies Restrictiveness, then the composite of the
systems in S also satisfies Restrictiveness.

This is a powerful result in that it allows analysis to be done on individual components and
then extended to the composite system.

Our general approach for the policy composition work consisted of the following steps:

» Incorporate Restrictiveness into the CSS framework.
» Show that other information flow policies are a special case of Restrictiveness.

Since Restrictiveness is composable with itself, any other policy that is a special case of Re-
strictiveness can be composed with Restrictiveness. The resulting composite system will satisfy
Restrictiveness.

The particular challenges to accomplishing this approach were:

1% Such requirements are commonly referred to as unwinding conditions for the flow policy rather than the flow policy
itself. Usually the flow policy itself requires that equivalent event sequences lead to equivalent states. The unwinding
conditions reduce such policy statements about sequences of events to statements about individual events. Performing
analysis with respect to the unwinding conditions is generally much easier than performing analysis with respect to
the fiow policy itself.

16Here, b i an event sequence and out and leads Lo are the obvious extensions from functions on events to functions
on event sequences. The application of a4 to event sequences indicates whether each flow contains the same set of
allowed flows.
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» The type of composition with respect to which Restrictiveness is composable is different
than the CSS notion of composition.

» Restrictiveness assumes a transitive flow relation. Thus, generalizations might be re-
quired in Restrictiveness to ensure intransitive information flow policies are a special
case of Restrictiveness.

7.2.1 Detailed Approach

To extend the framework, we defined a system to be a structure with fields:

s ¢cmp — a CSS component,

s inp — a set of agents denoting events that are system inputs,

s yws — a mapping from security domains to equivalence relations on states,
s D — a relation indicating whether flow is allowed from d; to d;, and

s L — a mapping from agents to security domains.}”

Since information flow policies are generally stated in terms of events and states, we needed
a way to represent events within the CSS framework. Events in information flow policies are
used to label state transitions, while the CSS framework labels state transitions with agents.
Equating events with agents is the natural approach to use in incorporating information flow
policies into the framework.

With these constructs, the formalization of Restrictiveness for systems was simply a matter
of translating the formalization in the literature. We next attempted to demonstrate that
Restrictiveness is composable with respect to the framework definition of composition. As
mentioned earlier, the CSS notion of composition is different than the type of composition with
respect to which Restrictiveness has previously been shown to be composable. The primary
difference is that the other type of composition assumes that systems have disjoint state spaces.
The motivation for this is that events represent messages passed between loosely coupled
systems. In contrast, agents in the CSS framework are more to denote responsibility for
a transition than to denote information being communicated; communication is assumed to
occur through shared state information.

The significance of this difference poses a problem when showing that security requirements of
the form illustrated in Section 7.1.1 are composable. Then, the requirements are assumed to
hold for each of a collection of systems and the goal is to show the composite of those systems
satisfies the requirements. Some of the requirements assert the existence of a st4 satisfying
certain properties. Unfortunately, the fact each individual system satisfies the requirements
only guarantees the existence of a set of st4’s each of which satisfies the desired properties for
one of the individual systems. To prove composability, a st4 must be exhibited that satisfies
the properties for the composite system. Essentially, this requires exhibiting a single st4 that
satisfies the necessary properties for each system. In Restrictiveness’ version of composition,
the desired st, is simply the merger of the st4’s known to exist for each system. Since the state
spaces are independent, this merger is well-defined. When the state spaces are not independent,

1715 the PVS itself, we refer to “security domains” as levels. This is an artifact of the work initially being based on
MLS policies. Also note that D and L are actusally generic parameters to the system theory rather than fields of the
system structure. The only real significance to this distinction is that D and L must be static throughout the execution

of a system.
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some way is needed to merge the st,’s known to exist for the individual components into a st
acceptable to all components.

The only solution we developed to this type of problem was to add assumptions about the set
of systems being composed. Thus, the composition theorem was of the form:

If sys_set satisfies certain hypotheses and each element of sys_set is Restrictive, then
the composition of the elements in sys_set is Restrictive.

This is a less desirable composition result than that for Restrictiveness since the additional
hypotheses must be considered each time Restrictiveness of components is to be lifted to Re-
strictiveness of the composite. Note, however, that when the Restrictiveness’ simplifying as-
sumption about state space independence is made, the proof of the additional hypotheses is
trivial. This simplification is only possible when specifications are written in a loosely coupled
manner. For more tightly coupled components, the additional hypotheses are a concern, but
then the original form of Restrictiveness cannot even be used.

As an alternative, we also considered a strictly stronger policy definition based on event closure.
A system is said to satisfy event closure if:

n leads-to(stl,e)(stz) A sty RL(e) st3 A sty L(e) sty
= leads_to(sts, C)(St4)

In other words, whenever (st;, sto, ) and (sts, st4, €) denote equivalent transitions with respect
to & (), then if one transition is valid in the system the other transition must be valid, too.

We define a System!® to be a system that satisfies the unwinding condition dealing with “high”
inputs!® (known as the Local Respect condition in Rushby’s work) and satisfies event closure.
We showed the conjunction of these conditions is composable. This means that a composition
of Systems is itself a System. Event closure implies the unwinding condition dealing with
“Jow inputs” (known as the Step Consistency condition in Rushby’s work). So, the fact that
composition preserves Systems results in a policy that is very similar to Restrictiveness yet
composable using our definition of composition. If event closure is an acceptable policy for
an analyst, the analyst could use event closure and not need to prove additional hypotheses
hold when lifting event closure of components to a composite system. However, neither the
Local Respect condition nor event closure subsumes Restrictiveness’ requirement on outputs
and consequently they alone might not be sufficient security requirements.

A third option explored in this work is Restrictive Systems—that is, systems that satisfy all
the requirements of McCullough restrictiveness and satisfy event closure. This definition of
security is strictly stronger than McCullough Restrictiveness. The associated composability
theorem for Restrictive Systems has fewer proof obligations than does the theorem for restric-
tive systems. Thus, this approach represents a compromise between the first two approaches.

Next, we demonstrated that Rushby’s transitive noninterference is simply a deterministic ver-
sion of Restrictiveness. This ensures that as long as each component system is either restrictive
or noninterfering, then the composite is restrictive as long as the additional hypotheses hold.

Finally, we investigated the generalization of Restrictiveness to incorporate intransitive poli-
cies. Although it was relatively straightforward to incorporate Rushby’s concepts for intransi-
tive policies into the definition of Restrictiveness, we were unable to demonstrate the resulting

38 Note the capitalization.
19 By a high input, we mean an input event whose security domain is not permitted to communicate with the domain
with respect to which the view is being taken.
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generalization was composable. We were successful in demonstrating that the Local Respect
and Step Consistency conditions are composable (once again under some additional hypotheses
on the components being composed). However, we were not able to complete the proof that
the unwinding condition dealing with system outputs is composable before running out of time
on the program. This proof is the hardest part of proving the unwinding conditions are com-
posable, so we really made little progress on demonstrating the generalization for intransitive
policies is composable.

Although most applications of information flow policies in practice have been with respect to
transitive (MLS) policies, having theories of intransitive policies would be useful. Example
applications include the following:

» Consider an MLS system that contains certain trusted processes that have privileges
allowing them to downgrade information. It is not possible to prove a transitive noninter-
ference policy because the downgrading of information would violate the policy. However,
an intransitive flow relation could be defined that allows:

- any information flow upward in level,
- any information flow to a trusted process, and
- any information flow from a trusted process.

Rushby’s intransitive noninterference with this flow relation would require that infor-
mation only flow downward in level if it goes through a trusted process. Analysis with
respect to this policy would identify any downgrades that bypass the trusted processes.

» Consider an assured pipeline. In other words, consider a system that requires information

to flow through certain stages. As a specific example, consider a firewall proxy protecting
internal systems from the internet. An intransitive flow relation could be defined that

allows:

- any information flow from the internet to the proxy, and
- any information flow from the proxy to the internal systems.

Analysis with respect to this system could detect flaws that allow the proxy to be bypassed.

The naturalness of intransitive policies to state such real-world policies is a strong argument
for developing theories to support intransitive policies.

7.3 Accomplishments

The positive results of the program are:
s We were able to formalize information flow policies within the framework.
= We were able to prove some composability results for these flow policies.

s We demonstrated transitive noninterference is a special case of Restrictiveness.

s We developed a generalization of Restrictiveness that subsumes intransitive noninterfer-
ence. We also completed small parts of the proof of composability of this definition.
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s We hypothesized that any information flow policy can be partitioned into a purely transi-
tive information flow policy plus a purely intransitive information flow policy. This would
provide a nice “normal form” for policies. We sketched a proof that this decomposition is
always possible, but did not spend much time verifying the details of the proof.

Limitations of the results of the program are:

= We were unable to complete the composability proof for the generalization of Restrictive-
pess. This means that our composition result does not currently support intransitive
policies. We do not yet know whether the desired result is unprovable or whether ad-
ditional time would allow us to complete the proof. We have, however, noted the need
to change the proof strategy based on differences in how equivalent event sequences are
defined in the transitive and intransitive cases.

Sequence equivalence is defined in terms of event purging which removes from the se-
quence those events that are prohibited from communicating with the domain of interest.
In the transitive case, the purgeability of an event depends on only the label of the event.
In contrast, purgeability in the intransitive case depends on what events occur later in
the sequence. To clarify this distinction, suppose flow is allowed from A to B and from
B to C, and events a and b have labels A and B. Event a is purgeable with respect to C
in the sequence (a) since there is no path from 4 to C in the remainder of the sequence.
However, since a is a path from A4 to B and b is a path from B to C, a is nonpurgeable with
respect to C in the sequence (a, ).

The significance of this difference is in piecing together an acceptable output sequence b
for the composability proof for the condition on system outputs. The proof proceeds by
induction and considers a sequence ag o a in the inductive step. Since the requirement
on outputs is assumed to hold for individual systems, it is possible to obtain a sequence
b, that is equivalent to (ag). The inductive hypothesis can be used to obtain a sequence
b, that is equivalent to a. In the transitive case, b; o b, can be used for b. The context
insensitivity of purging means that concatenation of equivalent sequences results in
equivalent sequences. The failure of this property to hold for intransitive purging means
a different strategy must be used for the proof.

= Our restrictiveness composition result contains additional hypotheses on the systems
being composed. This is undesirable because it requires additional analysis to be per-
formed whenever there is a need to lift the Restrictiveness of individual components to
the Restrictiveness of the composite. The additional analysis should be trivial in cases
when McCullough Restrictiveness is applicable. So, our formulation essentially contains
McCullough Restrictiveness as a special case.

» Our event closure composition result does not contain additional hypotheses, but is strictly
incomparable to Restrictiveness. The event closure property itself is strictly stronger than
Restrictiveness’ Step Consistency. However, Restrictiveness’ requirement on outputs is
not addressed by event closure. This makes it unclear whether event closure and the
Local Respect conditions alone are adequate properties for analyzing systems.

s The Restrictive System result is probably the best of the three composability results. Its
definition of security is stronger than that of McCullough and its proof obligations are
easier than our first restrictiveness composition result.

» We have no practical experience using our composition results. We do not know, for
example, how difficult it is to justify the additional hypotheses present in the composition
theorems.
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= Finally, we considered only two forms of information flow policies. There are a variety
of other types of information flow policies. At present we have no idea how composable
other types of flow policies are with Restrictiveness and Noninterference. In retrospect,
we underestimated the amount of time required for this task and thus did not budget
enough time to consider a wide enough variety of policies.

7.4 Lessons

All lessons learned have been captured above in Section 7.3.

7.5 Future Work

Much work remains to be done in this area. First, we need to sample more of the types of
information flow policies in existence and give consideration to how they might be composed. If
many of these policies are not easily subsumed under Restrictiveness, then the overall approach
of developing a general, composable information flow policy must be abandoned in favor of a
calculus indicating for each pair of policy types the result of a composition.

Regardless of which approach is found best, there still remains much to do for each. For
the unifying policy approach, the general, composable policy must be developed and shown to
subsume the various existing policies. In addition, experience must be gained regarding how
difficult the additional hypotheses in the composition theorem are to justify. If the calculus ap-
proach is pursued, then the various policies must be formalized in the extended CSS framework
and composition theorems must be proved for each pair of policy type. Once again, practical
experience using the resulting composition theorems is needed.
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Section 8

Tool Support

8.1 Goals

The goal of the tools task was to identify and prototype automated software tools to assist in
the design and refinement process including the proofs involved in applying the framework.
Preference was given to adapting existing tools, rather than creating new ones. Two primary
tools were identified.

» Specification Browser
This tool assists in writing and maintaining specifications in the form required by the
framework. The Specification Browser also aides analysts and developers in achieving
and maintaining consistent coverage in formal and informal descriptions of a software
component.

» Analyst’s Assistant

This tool facilitates the use of the framework by analysts new to PVS and to the framework.
The assistance provided comes in two forms:

- When possible, automate portions of proofs.

- Provide analysis hints on the proof approach to use and help the analyst construct
lemmas facilitating the analysis.

We discuss each of these tools in this section.

8.2 Approach

8.2.1 Specification Browser

The CSS methodology encourages parallel refinement of the formal model and the system de-
sign to a detailed level. This produces a stronger link between the assurance analysis and
the detailed design, resulting in a higher level of assurance that the developed code correctly
implements the specification. The Specification Browser supports the CSS methodology by
combining the formal specification and the design description in the same document. This
helps code developers and assurance engineers provide consistent coverage in text descrip-
tion and formal specifications, strengthening the connection between assurance and design
through successive refinement steps. Because code developers and assurance engineers work
from the same information, there is an increased level of assurance. Also, the Specification
Browser guides specifiers in supplying all the sections required for use in the composability
and refinement frameworks.

To achieve the goals of parallel refinement, close correspondence and ease of writing specifica-
tions, the Specification Browser was designed with the following functionality in mind:

s The browser has an understanding of the structure of a specification written for the
framework. This includes
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- the kinds of information commonly included in a formal specification (e.g., initial
state requirements and transitions)

~ convenient ways to structure this information for use in a specification in the CSS
Framework.

» The browser uses this understanding to instantiate templates for documents, sections,
transitions, etc. into which specifiers can type the information for the component being
specified. The browser helps link these templates together to form a complete specification
document.

» The default structure of a specification document will keep the formal and informal de-
scriptions as close together as possible to encourage cross-checking for consistency.

s The browser provides cross-referencing and search functionality that helps relate the
informal and formal specifications. For example, both versions can be displayed simul-
taneously, and regular expression searches can be performed in the formal and informal
specifications to help correlate definitions of concepts.

» Since it is frequently useful to have a tabular representation of the behavior of a compo-
nent or a piece thereof, the browser supports case coverage (processing) tables.

» To allow specifiers flexibility in the final appearance and structure of their documents,
the order of sections is configurable.

s The browser provides a high-level view of the document to aide navigation through a large
specification.

Specification documents produced with the browser intermingle formal specifications and text
descriptions of each component that is specified. Each formal specification has a corresponding
text description. Several tools are used to create these specification documents: PVS, Emacs,
the Specification Browser, UTEX, and tcl/tk. The relationship of some of these tools is shown in
Figure 4. The formal specifications are written with PVS (Prototype Verification System). The
Emacs display editor provides the interface to PVS. Although text descriptions may be written
using any text editor, Emacs can be customized or extended using the built-in Emacs LISP
language. Emacs also provides some support for producing ISTgX documents. The Specification
Browser is implemented using Emacs as a front-end user interface. The common interface with
PVS, the built-in support for KTEX, and the built-in Emacs-LISP language contributed to this
decision.

The Specification Browser makes use of several template files. These files help by identifying all
the required and optional sections for specification documents that follow the CSS methodology
and by providing the “boiler plate” information and driver files necessary to produce a BTgX
document.

The processing table tool is written in tcl/tk. It provides a graphical interface for creating
processing tables that describe the return value and state changes associated with each value
of the relevant Boolean conditions on the input parameters and current state. The processing
table tool can also be used to verify that all combinations of Boolean values are covered by a
given table. This tool was originally developed on another program and has been adapted to
work with the Specification Browser.

Understanding the high-level structure of a specification means that the Specification Browser
can determine in which specification section the point of the current Emacs buffer is located
and how that section relates to others in the document. This understanding also allows the
Specification Browser to find and simultaneously display corresponding formal and informal
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Figure 4: System-level diagram.

descriptions. Also, the Specification Browser will still function if a user changes the order of
specification sections or decides to omit certain sections although some of the features may
cease to work.

To implement this structure awareness, the Specification Browser uses formatted ISTgX com-
ments inserted in the specification’s text sections to uniquely identify each specification section.
The comments do not affect the output of the specification document. The comments are of the
form

$TLS%unique identifying stringt

Each formatted comment indicates the start or end of a specification section of a particular
type. There are formatted comments at the start and end of each template file which help
to identify that file. For example, a file may contain a component specification or a process
transition.

8.2.2 Analyst's Assistant

Early in the effort, we decided the most reasonable approach to explore was the construction
of PVS strategies to simplify the proof effort. PVS strategies are essentially LISP programs
that can be executed from within the prover to access and manipulate the current state of the
theorem being proved. The underlying PVS prover ensures any manipulations of the theorem
are logically sound. The developers of PVS provide the strategy facility to allow others to extend
the PVS prover as they see fit. This is the natural approach to providing analysts automated
support within the prover.

Unfortunately, there is little documentation currently available on how to construct interesting
strategies. In particular, little information is available on how to access the internal structures
representing a theorem. Without this information, proof steps cannot be tailored to fit the form
of the current theorem. Part of this effort, consequently, was aimed at reverse engineering
the internal data structures used to represent theorems. The LISP command describe was
the key to this part of the effort. It displays essentially all there is to know about any data
structure provided to it. By starting with the variable holding the current state of the theorem,
we were able to repeatedly use describe to pick the structure apart. Examples of the types of
things we were able to do include:
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= Test PVS expressions to see if they satisfied a specific form. For example, the frame-
work function comp_t denotes the set of restrictions on components. For each component
specified, a goal of the form:

~ comp_t(emp)

is generated. Once a method is devised to access the internal state, it is possible to test
whether the current theorem is of a given form, for example, comp_t(_). This is a handy
technique for deciding what type of requirement is being proved and which proof steps
are appropriate.

» Look up function definitions in the database PVS builds when it parses a specification.
As an example application, consider expanding the definition of a component. Typically,
we spe(nfy functions such as emp_spec, emp_spec_base, cmp_init, and so on. Upon finding
cmp_spec in the statement of the theorem, it is useful to be able to look up its definition
and find the need to expand cmp_spec_base. Similarly, it is useful to be able to look up
the definition of crmp_spec_base and identify the need to expand emp_init. Once the list of
functions to expand is identified, a proof command can be generated and executed that
expands exactly those functions.

a Traverse PVS expressions. For example, given an expressionsuchasz =Avz=BvVz =
C we were able to build a function that returned a list of the possible elements for z (in
this case, (3 B C).

In general, our approach was to construct a single strategy for use by analysts. This strategy
is called css-prove. The general structure of the strategy is:

if theorem is of class 1, then execute strategy 1
else if theorem is of class 2, then execute strategy 2

else if theorem is of class n, then execute strategy n
else indicate no help can be provided

In other words, css-prove recognizes certain classes of theorems and for each has an asso-
ciated proof script intended to automated some or all of the proof. This task was executed as
level-of-effort so we simply contimied adding new classes to css-prove until the budget was
expended. In addition to associating proof scripts with each class of theorem, we also associ-
ated a help page with each class. The help page provides a description of the class, suggests
a general approach to performing the proof, and indicates theorems and definitions from the
framework that might be of use in the proof If the analyst sets the :help flag to t when
calling css-prove, then rather than the class’ proof script being executed css-prove simply
displays the appropriate help page.

The intent of this approach is to allow the analyst to use the css-prove command whenever
he is unsure how to proceed. If the current theorem is one of the recognized classes, then the
strategy can start the proof in the correct direction (and sometimes complete the proof itself)
or provide the analyst with help. For analysts that know little about the framework or PVS,
having a single command that helps them learn about both should be very valuable. Even for
analysts that are knowledgeable of both the framework and PVS, the strategy can sometimes
save the analyst the trouble of performing a tedious proof manually.
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8.2.2.1 Detailed Approach We now provide an example of what we mean by a theorem class,

how css-prove recognizes a theorem class, and what a proof script and help page look like.

For this example, we will consider theorems of the form:
impl_init(compose(stack_set(ns)), net_serv_comp(ns))

This is an instance of a theorem class. The class is parameterized by a set of implementation
(low-level) components and a specification (high-level) component. In other words, the class
has the following template:

impl_init(compose(_),_)

The first step in implementing the proof strategy is to recognize prover states that match this
template. To do so we search the consequent (the things to be proven) in the current prover
goal looking for a formula that satisfies the following:

s it is an application of the impl_init function,
s it has two arguments, and
» its first argument is an application of the compose function.

The next step is to develop a sequence of prover commands to be returned by the strategy for
execution by PVS. This proof strategy is one of the more complicated ones developed under
this task and consequently provides a good illustration of the range of strategies that can
be developed. Note, however, that this particular type of proof is too difficult to completely
automate. Instead, this strategy simply automates the common steps that typically need to be
taken at the beginning of the proof. The hope is that by getting the analyst started in the right
direction, the analyst can more easily complete the proof.

The definition of impl_init(compose(set), cmp) is simply that init(compose(set)) is contained in
init(cmp). The definition of compose is such that init(compose(set)) is the intersection of init(c)
for each ¢ in set. So, letting ¢y, ..., ¢, denote the elements of set, it suffices to show that:

init(c;)(elem) A init(cy)(elem) A ... A init(cp)(elem) = init(cmp)(elem) (3)

The strategy we defined reduces the initial goal to this simpler goal. In addition, it expands the
definition of each component until the function defining the init for the component is reached.
For example, if fi, ..., f» denote the functions defining init for the ¢;’s and f denotes the function
defining emp’s init, then the strategy reduces the goal to:

fi(elem)... A fo(elem) = f(elem)

Having the strategy perform additional proof steps such as expanding the definitions of the
fi’s and f or perform a grind?® would be trivial. However, the one sample theorem of this
form that we attempted was not provable by simply grinding. We felt that the expansion of
additional functions left the theorem in too complex of a state to be a useful starting point
for the analyst and chose to stop at this point. This trade between automating as much as
possible and providing the analyst an understandable starting point is an issue for any proofs
that cannot be completely automated.

Now that we have described our intent for the strategy, we can describe its implementation.
The first step we take is to show that:

20The grind strategy is a powerful strategy provided with PVS that repeatedly expands function definitions and
performs logical rewrites. This strategy is powerful enough to automatically prove simple types of theorems.
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init(compose(set)) = { elem | init(c;)(elem) A ... A init(cy )(elem) }

We do this by constructing the negation of the above expression and using it for a case split.
The first case of the proof requires proving the expression true and can be done using a grind.
In the second case, we can assume this expression holds. After expanding the appropriate
functions, we see we can assume that init(compose(set))(elem) holds for some elem. Using the
expression proven in the first case, we can assume elem is an element of each init(c;). Then,
all that remains for the strategy to do is expand the ¢;’s to get to the f;’s and expand cmp to get
to f.

The hardest part of the strategy is constructing the expression upon which to case split. By
picking apart the conclusion, an expression representing set can be extracted. Using suitable
accessor functions discovered using describe, the definition of sel can be extracted. This
strategy assumes that the definition is of the form:

{cle=a V...Vec=cn}

PVS represents such an expression using a SET-EXPR data structure having accessors
BINDINGS and EXPRESSION. In this case, BINDINGS returns a singleton list containing ¢
and expression returns ¢ = ¢; V ... V ¢ = ¢,. PVS represents this expression using an
INFIX-APPLICATIONS structure with operator OR and argumentsc=c;andc=c,V...Vec = ¢,.
A recursive function was written to traverse such an expression and return the list ¢y, ..., ¢,.
Another recursive function was written that took such a list and converted it to an expression
of the form init(compose(set))(elem) = init(cy) A ... A init{c,).

The strategy uses the PVS strategy branch to split the proof into cases. Branch takes the
form:
(branch (cmd) ((cmdl) (emd2) ... (cmdm)))

In this construct, cmd, cmdl, ...cmdm are each strategies themselves. The strategy cmd is
assumed to break the current goal into m cases. The strategy cmdi is applied to case i. For the
strategy being built here cmd is the case split, cmd1 is a sequence of commands for proving (3),
and cmd2 expands impl_init, subset?, the ¢;’s and cmp.

Most of the strategies constructed on this task are much simpler. Generally, they simply
identify the class of theorem and perform a restricted grind to expand an appropriate set
of functions. This example shows, however, that more complicated strategies can easily be
constructed. See the Tools Report for more details on this and other strategies.

The associated belp page for this theorem class is as follows.

The current goal is of the form implinit(compose(set),cmp). The definition of
impl.init requires that any element belonging to the init of the first component,
compose(set), is an element of the init of the second component, cmp. The definition
of init for & composite is the intersection of the init for each component composed.
Thus, the first step of the proof is to reduce the goal to showing any element be-
longing to init for every element of set is in init{cmp). Then, it is necessary to show
that the combined requirements of the init’s for the elements of set are sufficient to
establish the requirements of init for cmp. The strategy is aimed at automatically
handling the first step of the proof Experimentation with the second step of the
proof shows it is not easily automated, so the default is for the analyst to handle the
second step himself.

The everything flag controls whether the default behavior occurs. If set to nil, the
default occurs. Otherwise, a grind command is executed in an attempt to complete



the proof. In experiments tried, this grind command can take a long time and still
fail to complete the proof.

8.2.2.2 AMore General Strategy The css-prove strategy provides focused help on the recog-
nized theorem classes but provides no help for other types of theorems. To provide more general
proof support, we defined a genera!l strategy called css - stewn. The PVS provided stew strat-
egy allows the analyst to specify a set of definitions and theorems to use in the proof and then
makes use of those hints to try to automatically prove the theorem. For simple theorems, this
strategy can be quite effective. However, for more complicated theorems, great care must be
taken in specifying the hints. Generally the approach used is to first expand all definitions and
then try to use logical operations to complete the proof. If too many definitions are provided as
hints, then the strategy will expand much more than it needs. Even with moderately complex
theorems we have seen stew take hours to complete. On the other hand, if the analyst does not
specify enough definitions as hints, then the strategy might not be able to complete the proof.
The stew strategy does provide methods to fine tune the hints such as specifying definitions
that should not be expanded, but striking a proper balance can still sometimes be challenging.

The css-stewn strategy is simply a front-end to stew. It allows the analyst to provide some
additional hints that are used to fine tune the parameters provided to stew. The simplest
type of fine tuning enabled by css - stewn is the specification of an expansion level. Specifying
level O results in no definitions being expanded beyond those explicitly listed by the analyst.
Specifying level 1 causes the functions appearing in the current theorem to be added to the
list. Specifying level 2 causes the functions used in the definition of the functions appearing
in the current theorem to be added. In other word, each time the level is increased, function
expansion is done to one level lower. This provides a simple way for the analyst to prevent
expansion from being done too deeply.

For analysts who have knowledge of the internal representation of the theorem as well as some
LISP programming experience, more advanced hints can be provided through css-stewn. This
is accomplished by allowing the analyst to specify a LISP function defining a stopping criterion
for expansion. This allows the analyst to request functions be expanded until the theorem
has a certain form. For example, the analyst could instruct the strategy to expand functions
until the current goal is a universally quantified expression. As another example, the analyst
could indicate that definitions should be expanded until the current goal is of the form A = B.
Given the need to understand the internal structure of theorems and LISP programming, this
advanced feature of the strategy is expected to be of use to strategy developers rather than
analysts. In fact, we expect the current definition of css-prove could be simplified by using
css-stewn. Unfortunately, css-stewn was the last strategy we developed so is not used by
any of the other work.

8.3 Accomplishments
8.3.1 Specification Browser

The Specification Browser prototype implementation achieved most of its goals. It provides an
automated environment with some flexibility for creating specification documents that follow
the CSS methodology. Because of its understanding of the high-level structure of a specification,
the Specification Browser supports reviewing corresponding formal specifications and text
descriptions. The Specification Browser user interface shows an outline of the specification
document based on the required and optional sections for use with the composability and
refinement frameworks. Regular expression search was implemented and the processing table
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tool was integrated. The template files reduce the overhead associated with producing a IATpX
document. Since the browser was implemented in Emacs LISP there is the potential for
significant interaction with PVS functionality, but this has not been exploited in the prototype.

There are some limitations in the browser functionality:

= Configurability of section order was only partially achieved. This turned out to be a diffi-
cult requirement. Currently, the formatted comments which identify whole sections of the
specification document can be placed in any order within a single component specification
or transition file. However, the formatted comments are insufficient to connect a PVS file
to a text section unless the PVS file’s formatted comment appears in that text file. Asa
result, if someone decided to place all the PVS theories in an appendix, other Specification
Browser features such as viewing corresponding sections, checking specification files, and
the Specification Browser outline interface would not operate properly.

» The output of regular expression searches could be more helpful. A regular expression
search can be used from the Specification Browser outline interface and from any file that
is part of the current specification document. When a search is performed, the results
are displayed in a buffer showing the files and locations where matches are found. This
buffer may be used to move directly to the buffer and the location of the found regular
expression. The feature could be improved if the search results screen also showed the
string found by the regular expression search. Showing the line that contains the found
regular expression might be even more helpful. Also, it may be helpful to mark the search
results after having visited one of the found regular expression. This would identify which
matches the user has already visited.

s The browser is probably of greatest help to someone inexperienced with the framework and
with IKTpX. It might not improve efficiency of someone who is experienced in producing
specification documents of the type produced by the browser.

8.3.2 Analyst’s Assistant
The following proof classes are currently recognized by css-prove:

® satisfies(-, always(.)), where the second parameter is an arbitrary state or action predi-
cate

assum_satis fies(, always(.)), where the second parameter is a state or action predicate

The strategy uses theorems in the framework to reduce these goals to simpler goals. The
analyst is expected to provide names of lemmas asserting these goals hold.?! If appropri-
ate lemmas are provided as hints, the proof is automatically completed. Otherwise, the
strategy displays what the lemmas should look like and leaves the reduced goals for the
analyst to prove.

» steps_satisfy(-, stable(.)) or assum_steps_satisfy(-, stable(.))

The strategy expands the framework functions defining satisfaction and stability as well
as the top level functions defining the component and state predicate of interest. This
saves the analyst the hassle of performing certain common steps that must always be
performed for this type of proof, however, the analyst must complete the proof manually.

21 Actually, the strategy defaults to using variants of the current theorem name as the lemma names. By following a
specific naming convention, this saves the analyst the trouble of providing the hinte.
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= steps_satisfy(_,.) or assum_steps_satisfy(-,.) where the second parameter is an arbitrary
action predicate
The strategy expands the framework functions defining satisfaction as well as the top-
level functions defining the component and action predicate of interest. This saves the
analyst the hassle of performing certain common steps that must always be performed
for this type of proof, however, the analyst must complete the proof manually.

e init_satisfies(-,.)
The strategy expands the functions defining init_satis fies as well as the top-level functions

defining the component and state predicate of interest. The analyst must complete the
proof manually.

s init_restriction(.)
The strategy reduces the goal to demonstrating the existence of a state satisfying the
init for the component of interest. The analyst can optionally provide as a hint a lemma
asserting the existence of such an element. The proof is completed automatically if the
hint is provided.

m cags_restriction(.)

The strategy reduces the goal to demonstrating the existence of an agent satisfying the
cags for the component of interest. The analyst can optionally provide as a hint an element
believed to be in cags. If the hint is provided the PVS provided grind strategy is used to
attempt to complete the proof by showing the specified element is in cags. Our experience
is that when the hint is provided the proof can typically be completed automatically.

» guar_restriction(.), rely_restriction(_), hidd_restriction(.), view_rely_restriction(.),
view_hidd_restriclion(.), view_guar restriction(_), view_inil_restriction(.),
view.w far_restriction(.), view_sfar_restriction(.), guar_stutiering_restriction(.),
rely.stutiering_restriction(.), hidd_stuttering_restriction(.), wfar_restriction(.),
sfar_restriclion(.), wfar_stuttering_restriction(.), or sfar_stuttering_restriction(_)

The strategy expands the functions defining the restriction of interest as well as top-level
functions defining the component of interest. In some cases, this is sufficient to complete
the proof. Genersally, though, additional functions need to be expanded to complete the
proof. These additional functions can be provided as bints to the strategy. Then, the proof
is completed automatically. The functions that must be provided as hints are usually
straight-forward to determine from the structure of the specification. ??

s compt(.)
The strategy expands comp_t. This reduces the goal to showing each of the component
restrictions holds. Since the component restriction theorem classes were addressed above
(see the preceding three bullets), this theorem class will not be discussed further here.

s VIEW S(vw)
The strategy simply executes the grind strategy. Due to the way in which CSS specifica-
tions are written, this was found to always complete the proof automatically.

m init(.)(-)

The strategy simply executes the grind strategy. With the CSS specifications, this was
always found to automatically complete the proof.

22 An obvious enhancement would be to have the strategy identify these functions automatically.
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» impl_init(compose(.),.)

This theorem class was used in the previous section to illustrate the strategy develop-
ment process. The strategy reduces the goal by expanding framework functions and the
definition of init for the composite, but the analyst must complete the proof manually.

= subset?(guar(compose(_)), guar(.)) or subset?(hidd(compose(.)), hidd(.))
The strategy operates on these classes in a manner analogous to that for impl_init.

= impl_steps(compose(.), ) or implements(_, )

The strategy expands impl_steps or implements to reduce the goal to demonstrating pre-
viously described theorem classes. The analyst can then invoke the strategy again to
work on each of the generated goals. Alternatively, the analyst can provide lemma names
addressing the generated goals in which case the proof is completed automatically. The
strategy defaults to trying variants of the theorem’s name as the lemma names. If the
analyst follows certain naming conventions this allows the proof to be automatically com-
pleted even without explicitly providing the hints.

Most of the practical experience with the strategies developed on this task was with the strate-
gies aimed at proving a candidate component specification satisfied the requirements on com-
ponents. Each component specified had 18 lemmas specified and one TCC generated that dealt
with these requirements. Since 10 or so components were specified on the program, this gave
around 200 lemmas with which to experiment. The set of theorems stated about compositions
and refinements was much smaller so less experimentation was possible.

Generally, the strategy was found to be quite effective on the component restriction theorem
classes. With minimal hints provided by the analyst, the strategy was able to automatically
prove all but two of the approximately 200 tests run. Use of dependent typing in the specifica-
tions was the cause of the other two tests failing. Although the strategy could not complete the
proofs automatically, it still made significant progress on the proofs.

For the other classes of theorems, too few examples were worked to make a meaningful assess-
ment. For simple theorems such as showing that view relations are equivalence relations and
showing that given witness states are elements of init, css-prove was found to quickly and
automatically complete proofs in the examples tried. For more complicated theorems such as
5 showing impl_init(compose(set), cmp) holds, the strategy was found to reduce the theorem to the
| desired point. Once the general approach for defining strategies was developed, strategies for
new classes of theorems could usually be defined within an hour or two of time. This suggests
that with a minimal amount of additional time the css-prove strategy could be extended to
cover additional classes of theorems that arise when using the CSS framework.

In addition to the strategies themselves, we also documented instructions on how to write PVS
proof strategies. The intent is that this information would provide a starting point for others
who wish to modify our strategies or write their own.

8.4 Lessons

8.4.1 Specification Browser

The following lessons have been drawn from the Specification Browser work:

s Configurability in the order of sections — The requirement to allow configurability
in the order of specification document sections increased the complexity of most features
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of the Specification Browser. More work would have been completed on this first prototype
if this requirement had been omitted.

= Degree of control over specification document — It is easy for a writer to bypass
the Specification Browser and develop specification documents that do not follow the
format produced by the browser. This would seriously undermine the ability of the tool
to fulfill its function. Preventing specifiers from bypassing the Specification Browser
would require a more sophisticated implementation than could be developed under this
prototype effort. It would be necessary either to place the structural information (i.e.,
the formatted comments) maintained by the tool outside the text files themselves or to
elevate them to commands that must be properly maintained by the specifier and parsed
for the document to be considered well-formed input to the tool.

» Low-level versus high-level view of structure — The Specification Browser interface
was initially conceived at a rather low level in which Emacs M-x commands were entered
to instantiate template files and link them together. It was subsequently decided that a
higher-level, outline-oriented interface would be more user friendly. The tool might have
turned out better had we started thinking about the outline-oriented interface earlier.

8.4.2 Analyst's Assistant

The work resulted in the following observations:

s PVS strategies provide an effective mechanism for providing help to analysts. They are
simple enough to write that the amount of time they save analysts justifies the investment
to construct them.

s Strategies provide a useful bridge between how one would like to write specifications and
how one is sometimes forced to write specifications. For example, consider the theorem
class impl_init(compose(.), .). The part of the proof addressed by css-prove is rewriting
init(compose(.)) as init(cmpy) A ... A init(cmp, ). This rewriting would not be necessary
if the compose operator would explicitly set init to the conjunction of the inits for the
individual components. This is not possible, though, since the mumber of components
is unknown. Instead, a universally quantified expression is used to assert the result
incorporates each component init. Because the proof strategy is executed at proof time
when the number of components being composed is known, it can rewrite the expression
in the more useful form.

As another example, the standard approach for writing CSS components is to first spec-
ify spec_base, then demonstrate spec_base satisfies the component restrictions, and finally
specify spec to be equal to spec.base. This is necessary to allow PVS to successfully
typecheck the theorems asserting the candidate component satisfies the component re-
strictions, but is annoying when proving other theorems since it is necessary to expand
both spec and spec_base rather than simply expanding spec. The strategies can hide the ad-
ditional layer of specification by automatically expanding spec_base whenever expanding

spec.

s Due to the nature of this task, little thought was given to building blocks that would be
of use in writing strategies. New functions were defined as needed to address the next
class of theorem to be recognized by the strategy. Future strategy development would
benefit from having a set of general purpose utilities upon which to build. For example,
as mentioned earlier the css-stewn strategy could provide a powerful building block
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for use in other strategies. In addition to simplifying the implementation of the existing
strategies, this could simplify the construction of strategies in the future.

» The effectiveness of strategies is heavily dependent on the structure of the specifications.
For example, some strategies that worked well on CSS specifications were found to work
poorly on strategies written in a different form on another project. One way to view
this lesson is that analysts should write their specifications in a standard format for
which their proof strategies are tuned.”® Another way to view this lesson is that the
more specifications that can be used to test a strategy the better. Experience gained
from additional testing might allow the strategy to be made more tolerant of differing
specification styles.

= A trade-off must often be made between the number of steps automatically executed by
the strategy and the complexity of the goals left for the analyst to prove. For example,
each strategy could finish by attempting a grind, but for more complicated theorems
this would take a long time and leave the analyst with a large number of goals to prove.
Making this trade-off is somewhat subjective and was difficult to do on this effort due to
the small number of examples worked.

8.5 Future Work
8.5.1 Specification Browser

The following are some of the areas for future work on the Specification Browser:

= HTML output — Post script viewers are not readily available on all computing platforms.
Conversion of the IATEX to HTML is suggested because web browsers (HTML viewers)
are available on most computing platforms at no cost. HTML output could allow people
to participate in document reviews more easily.

= Automatic File Creation — The Specification Browser is not completely automatic
when it comes to creating and linking parts of a specification document while viewing
the *TLS OUTLINE* buffer, the Specification Browser outline interface. Three com-
mands, tls-add-comp-spec, tls-add-transition, and tls-add-processing-table, only provide
instructions on actions required to add parts to a specification document.
The problem of determining where to position new parts of a specification document was
more difficult than expected. Consider creating and adding a component specification. If
the *TLS OUTLINE* buffer is displaying a document outline only detailed to the level of
showing other component specifications, then itis fairly easy, based on the cursor position,
where the newly created component specification should be placed.
If the *TLS OUTLINE* buffer is displaying a document outline which shows all the details
of a document outline, the cursor position does not always clearly identify the position for
the new component specification. When the cursor is immediately before or after the start
or end of a component specification, the position of the new component specification can
be determined. A set of rules is needed to guide the Specification Browser in positioning
a new component specification when the cursor is in a low-level section of an existing
component specification
If tls-add-comp-spec, tls-add-transition, and tls-add-processing-table were modified to
more fully automate the process of creating and linking parts of a specification document,
the Specification Browser would be a more user-friendly tool.

23Users of the css -prove strategy should strive to write specifications in the form used for the CSS specifications.
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s Request Transition State Changes — At several levels in a specification document
a sequence of related sections is allowed. For example, the entire document can consist
of a sequence of component specifications; each component specification can contain a
sequence of request specifications; and each request specification can contain a sequence
of transitions that describe the various processing cases. Due to lack of time this last
example has not been fully integrated into the tool. Ifit were added it would be desirable to
alsoimplement functionality to check consistency between the transition sections included
and the rows of the processing table.

8.5.2 Analyst's Assistant
Areas in which additional work could be done include:

s Building a larger set of specifications to use as a testbed. This would provide data
regarding the robustness of the strategies.

» Constructing general purpose strategies that could be used as building blocks for other
strategies. Essentially, this would result in a strategy development kit (SDK). Rewriting
the existing strategies with such an SDK would make them more maintainable. In
addition, future strategies could be constructed more easily.

» Improving how the css-prove strategy handles the currently recognized classes of theo-
rems. For example, to prove component restrictions using css-prove currently requires
the analyst provide hints. Some of these hints could be guessed at by the strategy. This
would make the proofs slightly more automated.

s Expanding the set of classes recognized by the css-prove strategy. This would expand
the scope of the help provided to analysts.
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Section 9

Program Conclusions

This report has provided an overview of the work performed, accomplishments and lessons
learned on the Composability for Secure Systems program. A PVS framework for compo-
sition and refinement reasoning has been developed. The application of this framework to
the analysis of functional correctness, design refinement, fault tolerance and security has been
demonstrated. We have also explored the use of tools to make this analysis easier and more cost
effective. Questions remaining for future work are outlined in each of the foregoing sections.
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